Skip to main content

Advertisement

Log in

Liver X Receptor β Is Involved in Formalin-Induced Spontaneous Pain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Increasing evidence indicates that the liver X receptor(LXR) β modulates inflammatory pain. However, the molecular mechanisms through which LXRβ modulates pain are unclear. Here, we found that LXRβ-null mice responded more strongly to acute noxious stimuli than wild-type (WT) littermates (in the hot plate and Hargreaves tests) and had augmented tonic inflammatory pain (in the formalin test). This increased reactivity to inflammatory pain was accompanied by enhanced formalin-evoked Fos and pERK staining of second-order nociceptive neurons. Immunohistochemistry showed that the expression of CGRP, SP, and IB4 was increased in the lamina I–II of the lumbar dorsal horns in formalin-injected LXRβ knockout (KO) mice compared with the WT controls. In addition, LXRβ deletion in the mice enhanced the formalin-induced inflammation with more activated microglia and astrocytes in the spinal cord. Furthermore, the levels of pro-inflammatory cytokines (IL-1β ,TNF-α) as well as NFκB in the formalin-injected paw were elevated by the loss of LXRβ. Taken together, these data indicate that LXRβ is involved in acute as well as inflammatory pain, and thus, it may be considered as a new target for the development of analgesics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alberti S, Schuster G, Parini P, Feltkamp D, Diczfalusy U, Rudling M, Angelin B, Björkhem I et al (2001) Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRβ-deficient mice. J Clin Invest 107(5):565–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pannu PS, Allahverdian S, Francis GA (2013) Oxysterol generation and liver X receptor-dependent reverse cholesterol transport: not all roads lead to Rome. Mol Cell Endocrinol 368(1-2):99–107

    Article  CAS  PubMed  Google Scholar 

  3. Korach-André M, Gustafsson JA (2015) Liver X receptors as regulators of metabolism. Biomol Concepts 6(3):177–190

    Article  PubMed  Google Scholar 

  4. Gustafsson JA (2016) Historical overview of nuclear receptors. J Steroid Biochem Mol Biol 157:3–6

  5. Fan X, Kim HJ, Bouton D, Warner M, Gustafsson JA (2008) Expression of liver X receptor beta is essential for formation of superficial cortical layers and migration of later-born neurons. Proc Natl Acad Sci U S A 105(36):13445–13450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guo L, Xu P, Tang X, Wu Q, Xing Y, Gustafsson JA, Xu H, Fan X (2014) Liver X receptor β delays transformation of radial glial cells into astrocytes during mouse cerebral cortical development. Neurochem Int 71:8–16

    Article  CAS  PubMed  Google Scholar 

  7. Xu P, Xu H, Tang X, Xu L, Wang Y, Guo L, Yang Z, Xing Y et al (2014) Liver X receptor β is essential for the differentiation of radial glial cells to oligodendrocytes in the dorsal cortex. Mol Psychiatry 19(8):947–957

    Article  CAS  PubMed  Google Scholar 

  8. Sacchetti P, Sousa KM, Hall AC, Liste I, Steffensen KR, Theofilopoulos S, Parish CL, Hazenberg C et al (2009) Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells. Cell Stem Cell 5(4):409–419

    Article  CAS  PubMed  Google Scholar 

  9. Theofilopoulos S, Wang Y, Kitambi SS, Sacchetti P, Sousa KM, Bodin K, Kirk J, Saltó C et al (2013) Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis. Nat Chem Bio 9(2):126–133

    Article  CAS  Google Scholar 

  10. Kim HJ, Fan X, Gabbi C, Yakimchuk K, Parini P, Warner M, Gustafsson JA (2008) Liver X receptor beta (LXRbeta): a link between beta-sitosterol and amyotrophic lateral sclerosis-Parkinson’s dementia. Proc Natl Acad Sci U S A 105(6):2094–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fandel D, Wasmuht D, Avila-Martin G, Taylor JS, Galan-Arriero I, Mey J (2013) Spinal cord injury induced changes of nuclear receptors PPARalpha and LXRbeta and modulation with oleic acid/albumin treatment. Brain Res 1535:89–105

    Article  CAS  PubMed  Google Scholar 

  12. Andersson S, Gustafsson N, Warner M, Gustafsson JA (2005) Inactivation of liver X receptor beta leads to adult-onset motor neuron degeneration in male mice. Proc Natl Acad Sci U S A 102(10):3857–3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paterniti I, Genovese T, Mazzon E, Crisafulli C, Di Paola R, Galuppo M, Bramanti P, Cuzzocrea S (2010) Liver X receptor agonist treatment regulates inflammatory response after spinal cord trauma. J Neurochem 112(3):611–624

    Article  CAS  PubMed  Google Scholar 

  14. Dai Y, Iwata K, Fukuoka T, Kondo E, Tokunaga A, Yamanaka H, Tachibana T, Liu Y et al (2002) Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization. J Neurosci 22(17):7737–7745

    CAS  PubMed  Google Scholar 

  15. Ji RR, Suter MR (2007) p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain 3:33

    PubMed  PubMed Central  Google Scholar 

  16. Bradesi S (2010) Role of spinal cord glia in the central processing of peripheral pain perception. Neurogastroenterol Motil 22(5):499–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu P, Li D, Tang X, Bao X, Huang J, Tang Y, Yang Y, Xu H et al (2013) LXR agonists: new potential therapeutic drug for neurodegenerative diseases. Mol Neurobiol 48(3):715–728

    Article  CAS  PubMed  Google Scholar 

  18. Cermenati G, Abbiati F, Cermenati S, Brioschi E, Volonterio A, Cavaletti G, Saez E, De Fabiani E et al (2012) Diabetes-induced myelin abnormalities are associated with an altered lipid pattern: protective effects of LXR activation. J Lipid Res 53(2):300–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li N, Rivera-Bermudez MA, Zhang M, Tejada J, Glasson SS, Collins-Racie LA, Lavallie ER, Wang Y et al (2010) LXR modulation blocks prostaglandin E2 production and matrix degradation in cartilage and alleviates pain in a rat osteoarthritis model. Proc Natl Acad Sci U S A 107(8):3734–3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32(1):77–88

    Article  CAS  PubMed  Google Scholar 

  21. Andurkar SV, Gulati A (2011) Assessment of the analgesic effect of centhaquin in mouse tail flick and hot-plate tests. Pharmacology 88(5-6):233–241

    Article  CAS  PubMed  Google Scholar 

  22. Ishida K, Kawamata T, Tanaka S, Shindo T, Kawamata M (2014) Calcitonin gene-related peptide is involved in inflammatory pain but not in postoperative pain. Anesthesiology 121(5):1068–1079

    Article  CAS  PubMed  Google Scholar 

  23. Saddi G, Abbott FV (2000) The formalin test in the mouse: a parametric analysis of scoring properties. Pain 89(1):53–63

    Article  CAS  PubMed  Google Scholar 

  24. Lindfors PH, Võikar V, Rossi J, Airaksinen MS (2006) Deficient nonpeptidergic epidermis innervation and reduced inflammatory pain in glial cell line-derived neurotrophic factor family receptor alpha2 knock-out mice. J Neurosci 26(7):1953–1960

    Article  CAS  PubMed  Google Scholar 

  25. Yashpal K, Fisher K, Chabot JG, Coderre TJ (2001) Differential effects of NMDA and group I mGluR antagonists on both nociception and spinal cord protein kinase C translocation in the formalin test and a model of neuropathic pain in rats. Pain 94(1):17–29

    Article  CAS  PubMed  Google Scholar 

  26. Sun D, Chen J, Bao X, Cai Y, Zhao J, Huang J, Huang W, Fan X et al (2015) Protection of radial glial-like cells in the hippocampus of APP/PS1 mice: a novel mechanism of memantine in the treatment of Alzheimer’s disease. Mol Neurobiol 52(1):464–477

    Article  CAS  PubMed  Google Scholar 

  27. Huang J, Jing S, Chen X, Bao X, Du Z, Li H, Yang T, Fan X (2015) Propofol administration during early postnatal life suppresses hippocampal neurogenesis. Mol Neurobiol. doi:10.1007/s12035-014-9052-7

  28. Kou ZZ, Li CY, Hu JC, Yin JB, Zhang DL, Liao YH, Wu ZY, Ding T et al (2014) Alterations in the neural circuits from peripheral afferents to the spinal cord: possible implications for diabetic polyneuropathy in streptozotocin-induced type 1 diabetic rats. Front Neural Circuits 8:6

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ali S, Mann DA (2004) Signal transduction via the NF-kappaB pathway: a targeted treatment modality for infection, inflammation and repair. Cell Biochem Funct 22(2):67–79

    Article  CAS  PubMed  Google Scholar 

  30. Menétrey D, Gannon A, Levine JD, Basbaum AI (1989) Expression of c-fos protein in interneurons and projection neurons of the rat spinal cord in response to noxious somatic, articular, and visceral stimulation. J Comp Neurol 285(2):177–195

    Article  PubMed  Google Scholar 

  31. Ren K, Ruda M (1994) A comparative study of the calcium-binding proteins calbindin-D28K, calretinin, calmodulin and parvalbumin in the rat spinal cord. Brain Res Brain Res Rev 19(2):163–179

    Article  CAS  PubMed  Google Scholar 

  32. Schwaller B, Meyer M, Schiffmann S (2002) ‘New’functions for ‘old’proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1(4):241–258

    Article  CAS  PubMed  Google Scholar 

  33. Gulyás AI, Megías M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J Neurosci 19(22):10082–10097

    PubMed  Google Scholar 

  34. Fan X, Kim HJ, Warner M, Gustafsson JA (2007) Estrogen receptor beta is essential for sprouting of nociceptive primary afferents and for morphogenesis and maintenance of the dorsal horn interneurons. Proc Natl Acad Sci U S A 104(34):13696–13701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andrè E et al (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 104(33):13519–13524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karim F, Wang CC, Gereau RW 4th (2001) Metabotropic glutamate receptor subtypes 1 and 5 are activators of extracellular signal-regulated kinase signaling required for inflammatory pain in mice. J Neurosci 21(11):3771–3779

    CAS  PubMed  Google Scholar 

  37. Obata K, Noguchi K (2004) MAPK activation in nociceptive neurons and pain hypersensitivity. Life Sci 74(21):2643–2653

    Article  CAS  PubMed  Google Scholar 

  38. Dowling P, Klinker F, Amaya F, Paulus W, Liebetanz D (2009) Iron-deficiency sensitizes mice to acute pain stimuli and formalin-induced nociception. J Nutr 139(11):2087–2092

    Article  CAS  PubMed  Google Scholar 

  39. McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA et al (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A 104(33):13525–13530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Verri WA Jr, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH (2006) Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther 112(1):116–138

    Article  CAS  PubMed  Google Scholar 

  41. Coderre TJ, Melzack R (1992) The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. J Neurosci 12(9):3665–3670

    CAS  PubMed  Google Scholar 

  42. Abbadie C, Taylor BK, Peterson MA, Basbaum AI (1997) Differential contribution of the two phases of the formalin test to the pattern of c-fos expression in the rat spinal cord: studies with remifentanil and lidocaine. Pain 69(1–2):101–110

    Article  CAS  PubMed  Google Scholar 

  43. Ceccatelli S, Villar MJ, Goldstein M, Hökfelt T (1989) Expression of c-Fos immunoreactivity in transmitter-characterized neurons after stress. Proc Natl Acad Sci U S A 86(23):9569–9573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Albuquerque C, Lee CJ, Jackson AC, MacDermott AB (1999) Subpopulations of GABAergic and non-GABAergic rat dorsal horn neurons express Ca2+-permeable AMPA receptors. Eur J Neurosci 11(8):2758–2766

    Article  CAS  PubMed  Google Scholar 

  45. Kang TC, Lee HS, Lee S, Lee CH (2001) Localization and Coexistence of Calcium-Binding Proteins and Neuropeptides in the Vagal Ganglia of the Goat. Anat Histol Embryol 30(5):281–288

    Article  CAS  PubMed  Google Scholar 

  46. Chang IY, Kim SW, Lee KJ, Yoon SP (2008) Calbindin D-28k, Parvalbumin and Calcitonin Gene-Related Peptide Immunoreactivity in the Canine Spinal Cord. Anat Histol Embryol 37(6):446–451

    Article  CAS  PubMed  Google Scholar 

  47. Ninomiya Y, Yasuda T, Kawamoto M, Yuge O, Okazaki Y (2007) Liver X receptor ligands inhibit the lipopolysaccharide-induced expression of microsomal prostaglandin E synthase-1 and diminish prostaglandin E2 production in murine peritoneal macrophages. J Steroid Biochem Mol Biol 103(1):44–50

    Article  CAS  PubMed  Google Scholar 

  48. Ji RR, Gereau RW 4th, Malcangio M, Strichartz GR (2009) MAP kinase and pain. Brain Res Rev 60(1):135–148

    Article  CAS  PubMed  Google Scholar 

  49. Kominato Y, Tachibana T, Dai Y, Tsujino H, Maruo S, Noguchi K (2003) Changes in phosphorylation of ERK and Fos expression in dorsal horn neurons following noxious stimulation in a rat model of neuritis of the nerve root. Brain Res 967(1–2):89–97

    Article  CAS  PubMed  Google Scholar 

  50. Gao YJ, Ji RR (2009) c-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury? Open Pain J 2:11–17

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hasegawa M, Kondo M, Suzuki I, Shimizu N, Sessle BJ, Iwata K (2012) ERK is involved in tooth-pressure-induced Fos expression in Vc neurons. J Dent Res 91(12):1141–1146

    Article  CAS  PubMed  Google Scholar 

  52. Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10(1):23–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-Geaghan EG, Landreth GE, Vinters HV, Tontonoz P (2007) Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proc Natl Acad Sci U S A 104(25):10601–10606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dai YB, Tan XJ, Wu WF, Warner M, Gustafsson JA (2012) Liver X receptor beta protects dopaminergic neurons in a mouse model of Parkinson disease. Proc Natl Acad Sci U S A 109(32):13112–13117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Nature Science Foundation of China (Nos. 31571069 and 81371197), the Natural Science Foundation Project of CQ CSTC 2013jjB10028, the Swedish Research Council and a grant from the Robert A. Welch Foundation (E-0004, J-ÅG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiande Yang, Jan-Ake Gustafsson or Xiaotang Fan.

Ethics declarations

Conflict of Interest

There are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Cai, Y., Wang, Y. et al. Liver X Receptor β Is Involved in Formalin-Induced Spontaneous Pain. Mol Neurobiol 54, 1467–1481 (2017). https://doi.org/10.1007/s12035-016-9737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9737-1

Keywords

Navigation