Skip to main content

Advertisement

Log in

Matrine Treatment Blocks NogoA-Induced Neural Inhibitory Signaling Pathway in Ongoing Experimental Autoimmune Encephalomyelitis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 18 May 2022

An Erratum to this article was published on 20 January 2017

This article has been updated

Abstract

Myelin-associated inhibitors, such as NogoA, myelin-associated glycoprotein (MAG), and oligodendrocyte myelin glycoprotein (OMgp), play a pivotal role in the lack of neuroregeneration in multiple sclerosis, an inflammatory demyelinating disease of the central nervous system (CNS). Matrine (MAT), a monomer that is used in traditional Chinese medicine as an anti-inflammatory agent, has shown beneficial effects in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. However, the underlying mechanisms of MAT-induced EAE amelioration are not fully understood. In the present study, we show that MAT treatment suppressed ongoing EAE, and this effect correlated with an increased expression of growth-associated protein 43, an established marker for axonal regeneration. MAT treatment significantly reduced the levels of NogoA, its receptor complex NgR/p75NTR/LINGO-1, and their downstream RhoA/ROCK signaling pathway in the CNS. In contrast, intracellular cyclic AMP (cAMP) levels and its protein kinase (protein kinase A (PKA)), which can promote axonal regrowth by inactivating the RhoA, were upregulated. Importantly, adding MAT in primary astrocytes in vitro largely induced cAMP/PKA expression, and blockade of cAMP significantly diminished MAT-induced expression of PKA and production of BDNF, a potent neurotrophic factor for neuroregeneration. Taken together, our findings demonstrate that the beneficial effects of MAT on EAE can be attributed not only to its capacity for immunomodulation, but also to its directly promoting regeneration of the injured CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. Kutzelnigg A, Lassmann H (2014) Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handb Clin Neurol 122:15–58. doi:10.1016/b978-0-444-52001-2.00002-9

    Article  PubMed  Google Scholar 

  2. Stadelmann C, Wegner C, Bruck W (2011) Inflammation, demyelination, and degeneration—recent insights from MS pathology. Biochim Biophys Acta 1812(2):275–282. doi:10.1016/j.bbadis.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  3. Sosa RA, Forsthuber TG (2011) The critical role of antigen-presentation-induced cytokine crosstalk in the central nervous system in multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research 31(10):753–768. doi:10.1089/jir.2011.0052

    Article  CAS  Google Scholar 

  4. Lovas G, Szilagyi N, Majtenyi K, Palkovits M, Komoly S (2000) Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain: a journal of neurology 123(Pt 2):308–317

    Article  Google Scholar 

  5. Alabed YZ, Grados-Munro E, Ferraro GB, Hsieh SH, Fournier AE (2006) Neuronal responses to myelin are mediated by rho kinase. J Neurochem 96(6):1616–1625. doi:10.1111/j.1471-4159.2006.03670.x

    Article  CAS  PubMed  Google Scholar 

  6. Cafferty WB, Duffy P, Huebner E, Strittmatter SM (2010) MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma. The Journal of neuroscience: the official journal of the Society for Neuroscience 30(20):6825–6837. doi:10.1523/jneurosci.6239-09.2010

    Article  CAS  Google Scholar 

  7. Pernet V, Schwab ME (2012) The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res 349(1):97–104. doi:10.1007/s00441-012-1432-6

    Article  CAS  PubMed  Google Scholar 

  8. Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N et al (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7(3):221–228. doi:10.1038/nn1188

    Article  CAS  PubMed  Google Scholar 

  9. Schwab ME (2010) Functions of Nogo proteins and their receptors in the nervous system. Nat Rev Neurosci 11(12):799–811. doi:10.1038/nrn2936

    Article  CAS  PubMed  Google Scholar 

  10. Forgione N, Fehlings MG (2014) Rho-ROCK inhibition in the treatment of spinal cord injury. World neurosurgery 82(3–4):e535–e539. doi:10.1016/j.wneu.2013.01.009

    Article  PubMed  Google Scholar 

  11. Mueller BK, Mack H, Teusch N (2005) Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4(5):387–398. doi:10.1038/nrd1719

    Article  CAS  PubMed  Google Scholar 

  12. Satoh S, Toshima Y, Hitomi A, Ikegaki I, Seto M, Asano T (2008) Wide therapeutic time window for rho-kinase inhibition therapy in ischemic brain damage in a rat cerebral thrombosis model. Brain Res 1193:102–108. doi:10.1016/j.brainres.2007.11.050

    Article  CAS  PubMed  Google Scholar 

  13. Huang XN, Fu J, Wang WZ (2011) The effects of fasudil on the permeability of the rat blood-brain barrier and blood-spinal cord barrier following experimental autoimmune encephalomyelitis. J Neuroimmunol 239(1–2):61–67. doi:10.1016/j.jneuroim.2011.08.015

    Article  CAS  PubMed  Google Scholar 

  14. Liu C, Li Y, Yu J, Feng L, Hou S, Liu Y, Guo M, Xie Y et al (2013) Targeting the shift from M1 to M2 macrophages in experimental autoimmune encephalomyelitis mice treated with fasudil. PLoS One 8(2):e54841. doi:10.1371/journal.pone.0054841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao YF, Zhang X, Ding ZB, Yang XW, Zhang H, Yu JZ, Li YH, Liu CY et al (2015) The therapeutic potential of Rho kinase inhibitor fasudil derivative FaD-1 in experimental autoimmune encephalomyelitis. Journal of molecular neuroscience: MN 55(3):725–732. doi:10.1007/s12031-014-0411-7

    Article  CAS  PubMed  Google Scholar 

  16. Yamamoto M, Urakubo T, Tominaga-Yoshino K, Ogura A (2005) Long-lasting synapse formation in cultured rat hippocampal neurons after repeated PKA activation. Brain Res 1042(1):6–16. doi:10.1016/j.brainres.2005.01.102

    Article  CAS  PubMed  Google Scholar 

  17. DerMardirossian C, Rocklin G, Seo JY, Bokoch GM (2006) Phosphorylation of RhoGDI by Src regulates Rho GTPase binding and cytosol-membrane cycling. Mol Biol Cell 17(11):4760–4768. doi:10.1091/mbc.E06-06-0533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ellerbroek SM, Wennerberg K, Burridge K (2003) Serine phosphorylation negatively regulates RhoA in vivo. J Biol Chem 278(21):19023–19031. doi:10.1074/jbc.M213066200

    Article  CAS  PubMed  Google Scholar 

  19. Liu N, Kan QC, Zhang XJ, Xv YM, Zhang S, Zhang GX, Zhu L (2014) Upregulation of immunomodulatory molecules by matrine treatment in experimental autoimmune encephalomyelitis. Exp Mol Pathol 97(3):470–476. doi:10.1016/j.yexmp.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  20. Kan QC, Zhu L, Liu N, Zhang GX (2013) Matrine suppresses expression of adhesion molecules and chemokines as a mechanism underlying its therapeutic effect in CNS autoimmunity. Immunol Res 56(1):189–196. doi:10.1007/s12026-013-8393-z

    Article  CAS  PubMed  Google Scholar 

  21. Higashiyama K, Takeuchi Y, Yamauchi T, Imai S, Kamei J, Yajima Y, Narita M, Suzuki T (2005) Implication of the descending dynorphinergic neuron projecting to the spinal cord in the (+)-matrine- and (+)-allomatrine-induced antinociceptive effects. Biol Pharm Bull 28(5):845–848

    Article  CAS  PubMed  Google Scholar 

  22. Xu M, Yang L, Hong LZ, Zhao XY, Zhang HL (2012) Direct protection of neurons and astrocytes by matrine via inhibition of the NF-kappaB signaling pathway contributes to neuroprotection against focal cerebral ischemia. Brain Res 1454:48–64. doi:10.1016/j.brainres.2012.03.020

    Article  CAS  PubMed  Google Scholar 

  23. Zhao P, Zhou R, Zhu XY, Hao YJ, Li N, Wang J, Niu Y, Sun T et al (2015) Matrine attenuates focal cerebral ischemic injury by improving antioxidant activity and inhibiting apoptosis in mice. Int J Mol Med 36(3):633–644. doi:10.3892/ijmm.2015.2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tanabe N, Kuboyama T, Kazuma K, Konno K, Tohda C (2015) The extract of roots of Sophora flavescens enhances the recovery of motor function by axonal growth in mice with a spinal cord injury. Front Pharmacol 6:326. doi:10.3389/fphar.2015.00326

    PubMed  Google Scholar 

  25. Jokubaitis VG, Gresle MM, Kemper DA, Doherty W, Perreau VM, Cipriani TL, Jonas A, Shaw G et al (2013) Endogenously regulated Dab2 worsens inflammatory injury in experimental autoimmune encephalomyelitis. Acta Neuropathologica Communications 1:32. doi:10.1186/2051-5960-1-32

    Article  PubMed  PubMed Central  Google Scholar 

  26. Grasselli G, Strata P (2013) Structural plasticity of climbing fibers and the growth-associated protein GAP-43. Frontiers in neural circuits 7:25. doi:10.3389/fncir.2013.00025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kan QC, Lv P, Zhang XJ, Xu YM, Zhang GX, Zhu L (2015) Matrine protects neuro-axon from CNS inflammation-induced injury. Exp Mol Pathol 98(1):124–130. doi:10.1016/j.yexmp.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  28. Thompson MA, Britt RD Jr, Kuipers I, Stewart A, Thu J, Pandya HC, MacFarlane P, Pabelick CM et al (2015) cAMP-mediated secretion of brain-derived neurotrophic factor in developing airway smooth muscle. Biochim Biophys Acta 1853(10 Pt A):2506–2514. doi:10.1016/j.bbamcr.2015.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dusart I, Ghoumari A, Wehrle R, Morel MP, Bouslama-Oueghlani L, Camand E, Sotelo C (2005) Cell death and axon regeneration of Purkinje cells after axotomy: challenges of classical hypotheses of axon regeneration. Brain Res Brain Res Rev 49(2):300–316. doi:10.1016/j.brainresrev.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  30. Guilluy C, Garcia-Mata R, Burridge K (2011) Rho protein crosstalk: another social network? Trends Cell Biol 21(12):718–726. doi:10.1016/j.tcb.2011.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Surma M, Wei L, Shi J (2011) Rho kinase as a therapeutic target in cardiovascular disease. Futur Cardiol 7(5):657–671. doi:10.2217/fca.11.51

    Article  CAS  Google Scholar 

  32. Koch JC, Tonges L, Barski E, Michel U, Bahr M, Lingor P (2014) ROCK2 is a major regulator of axonal degeneration, neuronal death and axonal regeneration in the CNS. Cell Death Dis 5:e1225. doi:10.1038/cddis.2014.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saal KA, Koch JC, Tatenhorst L, Szego EM, Ribas VT, Michel U, Bahr M, Tonges L et al (2015) AAV.shRNA-mediated downregulation of ROCK2 attenuates degeneration of dopaminergic neurons in toxin-induced models of Parkinson’s disease in vitro and in vivo. Neurobiol Dis 73:150–162. doi:10.1016/j.nbd.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  34. Pedraza CE, Taylor C, Pereira A, Seng M, Tham CS, Izrael M, Webb M (2014) Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase. ASN neuro 6(4). doi:10.1177/1759091414538134

  35. Fontoura P, Ho PP, DeVoss J, Zheng B, Lee BJ, Kidd BA, Garren H, Sobel RA et al (2004) Immunity to the extracellular domain of Nogo-A modulates experimental autoimmune encephalomyelitis. Journal of immunology (Baltimore, Md : 1950) 173(11):6981–6992

    Article  CAS  Google Scholar 

  36. Karnezis T, Mandemakers W, McQualter JL, Zheng B, Ho PP, Jordan KA, Murray BM, Barres B et al (2004) The neurite outgrowth inhibitor Nogo A is involved in autoimmune-mediated demyelination. Nat Neurosci 7(7):736–744. doi:10.1038/nn1261

    Article  CAS  PubMed  Google Scholar 

  37. Fang Y, Yan J, Li C, Zhou X, Yao L, Pang T, Yan M, Zhang L et al (2015) The Nogo/Nogo receptor (NgR) signal is involved in neuroinflammation through the regulation of microglial inflammatory activation. J Biol Chem 290(48):28901–28914. doi:10.1074/jbc.M115.678326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Skeldal S, Matusica D, Nykjaer A, Coulson EJ (2011) Proteolytic processing of the p75 neurotrophin receptor: a prerequisite for signalling? BioEssays 33(8):614–625. doi:10.1002/bies.201100036

    Article  CAS  PubMed  Google Scholar 

  39. Yamashita T, Tohyama M (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci 6(5):461–467. doi:10.1038/nn1045

    CAS  PubMed  Google Scholar 

  40. Mi S, Pepinsky RB, Cadavid D (2013) Blocking LINGO-1 as a therapy to promote CNS repair: from concept to the clinic. CNS drugs 27(7):493–503. doi:10.1007/s40263-013-0068-8

    Article  CAS  PubMed  Google Scholar 

  41. Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, Wong WM, Wang L et al (2007) LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med 13(10):1228–1233. doi:10.1038/nm1664

    Article  CAS  PubMed  Google Scholar 

  42. Huber AB, Weinmann O, Brosamle C, Oertle T, Schwab ME (2002) Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. The Journal of neuroscience : the official journal of the Society for Neuroscience 22(9):3553–3567

    CAS  Google Scholar 

  43. Liu H, Ng CE, Tang BL (2002) Nogo-A expression in mouse central nervous system neurons. Neurosci Lett 328(3):257–260

    Article  CAS  PubMed  Google Scholar 

  44. Satoh J, Onoue H, Arima K, Yamamura T (2005) Nogo-A and nogo receptor expression in demyelinating lesions of multiple sclerosis. J Neuropathol Exp Neurol 64(2):129–138

    Article  CAS  PubMed  Google Scholar 

  45. Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H (2007) TROY and LINGO-1 expression in astrocytes and macrophages/microglia in multiple sclerosis lesions. Neuropathol Appl Neurobiol 33(1):99–107. doi:10.1111/j.1365-2990.2006.00787.x

    Article  CAS  PubMed  Google Scholar 

  46. Cui Q, Yip HK, Zhao RC, So KF, Harvey AR (2003) Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons. Mol Cell Neurosci 22(1):49–61

    Article  CAS  PubMed  Google Scholar 

  47. Cai D, Qiu J, Cao Z, McAtee M, Bregman BS, Filbin MT (2001) Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. The Journal of neuroscience : the official journal of the Society for Neuroscience 21(13):4731–4739

    CAS  Google Scholar 

  48. Modi KK, Sendtner M, Pahan K (2013) Up-regulation of ciliary neurotrophic factor in astrocytes by aspirin: implications for remyelination in multiple sclerosis. J Biol Chem 288(25):18533–18545. doi:10.1074/jbc.M112.447268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (no. 31570357), the Henan Province Science and Technology Development Plan (No. 152102310044), and the Henan Province Chinese Medicine Research Institute, China. The authors thank Katherine Regan for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-Xian Zhang or Lin Zhu.

Ethics declarations

All efforts were made to reduce animal suffering, and the Institutional Committee on Care and Use of Research Animals approved the procedures used in this study.

Conflict of Interest

The authors declare that that they have no conflict of interest.

Additional information

The original version of this article was revised: The name of author Li Zhu was changed to Lin Zhu as requested by authors.

Quan-Cheng Kan and Hui-Jun Zhang have an equal contribution to this article.

An erratum to this article is available at https://doi.org/10.1007/s12035-017-0410-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, QC., Zhang, HJ., Zhang, Y. et al. Matrine Treatment Blocks NogoA-Induced Neural Inhibitory Signaling Pathway in Ongoing Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 54, 8404–8418 (2017). https://doi.org/10.1007/s12035-016-0333-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0333-1

Keywords

Navigation