Skip to main content
Log in

(−)-Epicatechin, a Natural Flavonoid Compound, Protects Astrocytes Against Hemoglobin Toxicity via Nrf2 and AP-1 Signaling Pathways

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

(−)-Epicatechin is a brain-permeable, natural product found at high concentrations in green tea and cocoa. Our previous research has shown that (−)-epicatechin treatment reduces hemorrhagic stroke injury via nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in vivo. However, the mechanism of action of this compound in modulation of oxidant stress and in protection against hemoglobin-induced astrocyte injury is unclear. Therefore, we explored the cellular and molecular mechanisms that underlie these protective effects in vitro. Mouse primary astrocytes isolated from wild-type mice and Nrf2 knockout (KO) mice were preconditioned with hemoglobin to simulate intracerebral hemorrhage (ICH) in vitro. Effects of (−)-epicatechin were measured by Western blotting, immunostaining, MTT assay, and reactive oxidant stress (ROS) assay. (−)-Epicatechin increased Nrf2 nuclear accumulation and cytoplasmic levels of superoxide dismutase 1 (SOD1) in wild-type astrocytes but did not increase SOD1 expression in Nrf2 knockout (KO) astrocytes. Furthermore, (−)-epicatechin treatment did not alter heme oxygenase 1 (HO1) expression in wild-type astrocytes after hemoglobin exposure, but it did decrease HO1 expression in similarly treated Nrf2 KO astrocytes. In both wild-type and Nrf2 KO astrocytes, (−)-epicatechin suppressed phosphorylated JNK and nuclear expression of JNK, c-jun, and c-fos, indicating that inhibition of activator protein-1 (AP-1) activity by (−)-epicatechin is Nrf2-independent. These novel findings indicate that (−)-epicatechin protects astrocytes against hemoglobin toxicity through upregulation of Nrf2 and inhibition of AP-1 activity. These cellular and molecular effects may partially explain the cerebroprotection as we previously observed for (−)-epicatechin in animal models of ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AP-1:

Activator protein-1

DAPI:

4,6-diamidino-2-phenylindole

EC:

(−)-Epicatechin

HO1:

Heme oxygenase 1

ICH:

Intracerebral hemorrhage

Nrf2:

Nuclear factor erythroid 2-related factor 2

ROS:

Reactive oxygen species

SOD1:

Superoxide dismutase 1

References

  1. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8(4):355–369. doi:10.1016/S1474-4422(09)70025-0

    Article  PubMed  Google Scholar 

  2. Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW (2014) Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol 115:25–44. doi:10.1016/j.pneurobio.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  3. Wang J (2010) Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol 92(4):463–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou K, Zhong Q, Wang YC, Xiong XY, Meng ZY, Zhao T, Zhu WY, Liao MF et al (2016) Regulatory T cells ameliorate intracerebral hemorrhage-induced inflammatory injury by modulating microglia/macrophage polarization through the IL-10/GSK3beta/PTEN axis. J Cereb Blood Flow Metab. doi:10.1177/0271678X16648712

    PubMed Central  Google Scholar 

  5. Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J (2016) Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol in press. doi: 10.1007/s12035-016-9785-6.

  6. Wang J, Fields J, Zhao C, Langer J, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S et al (2007) Role of Nrf2 in protection against intracerebral hemorrhage injury in mice. Free Radic Biol Med 43(3):408–414. doi:10.1016/j.freeradbiomed.2007.04.020

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chang CF, Cho S, Wang J (2014) (−)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Annals of clinical and translational neurology 1(4):258–271. doi:10.1002/acn3.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW, Grotta JC, Aronowski J (2007) Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke 38(12):3280–3286. doi:10.1161/STROKEAHA.107.486506

    Article  CAS  PubMed  Google Scholar 

  9. Iniaghe LO, Krafft PR, Klebe DW, Omogbai EK, Zhang JH, Tang J (2015) Dimethyl fumarate confers neuroprotection by casein kinase 2 phosphorylation of Nrf2 in murine intracerebral hemorrhage. Neurobiol Dis 82:349–358. doi:10.1016/j.nbd.2015.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pehar M, Vargas MR, Cassina P, Barbeito AG, Beckman JS, Barbeito L (2005) Complexity of astrocyte-motor neuron interactions in amyotrophic lateral sclerosis. Neurodegener Dis 2(3–4):139–146. doi:10.1159/000089619

    Article  PubMed  Google Scholar 

  11. Vargas MR, Pehar M, Cassina P, Beckman JS, Barbeito L (2006) Increased glutathione biosynthesis by Nrf2 activation in astrocytes prevents p75NTR-dependent motor neuron apoptosis. J Neurochem 97(3):687–696. doi:10.1111/j.1471-4159.2006.03742.x

    Article  CAS  PubMed  Google Scholar 

  12. Calkins MJ, Vargas MR, Johnson DA, Johnson JA (2010) Astrocyte-specific overexpression of Nrf2 protects striatal neurons from mitochondrial complex II inhibition. Toxicol Sci 115(2):557–568. doi:10.1093/toxsci/kfq072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao X, Aronowski J (2013) Nrf2 to pre-condition the brain against injury caused by products of hemolysis after ICH. Translational stroke research 4(1):71–75. doi:10.1007/s12975-012-0245-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raivich G, Behrens A (2006) Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Prog Neurobiol 78(6):347–363. doi:10.1016/j.pneurobio.2006.03.006

    Article  CAS  PubMed  Google Scholar 

  15. Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117(Pt 25):5965–5973. doi:10.1242/jcs.01589

    Article  CAS  PubMed  Google Scholar 

  16. Akaji K, Suga S, Fujino T, Mayanagi K, Inamasu J, Horiguchi T, Sato S, Kawase T (2003) Effect of intra-ischemic hypothermia on the expression of c-Fos and c-Jun, and DNA binding activity of AP-1 after focal cerebral ischemia in rat brain. Brain Res 975(1–2):149–157

    Article  CAS  PubMed  Google Scholar 

  17. Tao X, Sun X, Yin L, Han X, Xu L, Qi Y, Xu Y, Li H et al (2015) Dioscin ameliorates cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via HMGB-1 inhibition. Free Radic Biol Med 84:103–115. doi:10.1016/j.freeradbiomed.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  18. Dong Y, Liu HD, Zhao R, Yang CZ, Chen XQ, Wang XH, Lau LT, Chen J et al (2009) Ischemia activates JNK/c-Jun/AP-1 pathway to up-regulate 14-3-3gamma in astrocyte. J Neurochem 109(Suppl 1):182–188. doi:10.1111/j.1471-4159.2009.05974.x

    Article  CAS  PubMed  Google Scholar 

  19. Nijboer CH, Heijnen CJ, Groenendaal F, van Bel F, Kavelaars A (2009) Alternate pathways preserve tumor necrosis factor-alpha production after nuclear factor-kappaB inhibition in neonatal cerebral hypoxia-ischemia. Stroke 40(10):3362–3368. doi:10.1161/STROKEAHA.109.560250

    Article  CAS  PubMed  Google Scholar 

  20. El-Salamouny S, Ranwala D, Shapiro M, Shepard BM, Farrar RR Jr (2009) Tea, coffee, and cocoa as ultraviolet radiation protectants for the beet armyworm nucleopolyhedrovirus. J Econ Entomol 102(5):1767–1773

    Article  CAS  PubMed  Google Scholar 

  21. Aree T, Jongrungruangchok S (2016) Crystallographic evidence for beta-cyclodextrin inclusion complexation facilitating the improvement of antioxidant activity of tea (+)-catechin and (−)-epicatechin. Carbohydr Polym 140:362–373. doi:10.1016/j.carbpol.2015.12.066

    Article  CAS  PubMed  Google Scholar 

  22. Knezevic B, Komatsuzaki Y, de Freitas E, Lukowiak K (2016) A flavonoid component of chocolate quickly reverses an imposed memory deficit. J Exp Biol. doi:10.1242/jeb.130765

    PubMed  Google Scholar 

  23. Dower JI, Geleijnse JM, Gijsbers L, Zock PL, Kromhout D, Hollman PC (2015) Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: a randomized, double-blind, placebo-controlled, crossover trial. Am J Clin Nutr 101(5):914–921. doi:10.3945/ajcn.114.098590

    Article  CAS  PubMed  Google Scholar 

  24. Shah ZA, Li RC, Ahmad AS, Kensler TW, Yamamoto M, Biswal S, Dore S (2010) The flavanol (−)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 30(12):1951–1961

    Article  CAS  Google Scholar 

  25. Wu L, Zhang QL, Zhang XY, Lv C, Li J, Yuan Y, Yin FX (2012) Pharmacokinetics and blood-brain barrier penetration of (+)-catechin and (−)-epicatechin in rats by microdialysis sampling coupled to high-performance liquid chromatography with chemiluminescence detection. J Agric Food Chem 60(37):9377–9383. doi:10.1021/jf301787f

    Article  CAS  PubMed  Google Scholar 

  26. Faria A, Pestana D, Teixeira D, Couraud PO, Romero I, Weksler B, de Freitas V, Mateus N et al (2011) Insights into the putative catechin and epicatechin transport across blood-brain barrier. Food Funct 2(1):39–44. doi:10.1039/c0fo00100g

    Article  CAS  PubMed  Google Scholar 

  27. Cheng T, Wang W, Li Q, Han X, Xing J, Qi C, Lan X, Wan J et al (2016) Cerebroprotection of flavanol (−)-epicatechin after traumatic brain injury via Nrf2-dependent and -independent pathways. Free Radic Biol Med 92:15–28. doi:10.1016/j.freeradbiomed.2015.12.027

    Article  CAS  PubMed  Google Scholar 

  28. Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci Off J Soc Neurosci 21(17):6480–6491

    CAS  Google Scholar 

  29. Lan X, Liu R, Sun L, Zhang T, Du G (2011) Methyl salicylate 2-O-beta-D-lactoside, a novel salicylic acid analogue, acts as an anti-inflammatory agent on microglia and astrocytes. J Neuroinflammation 8:98. doi:10.1186/1742-2094-8-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pan LN, Zhu W, Li Y, Xu XL, Guo LJ, Lu Q, Wang J (2014) Astrocytic toll-like receptor 3 is associated with ischemic preconditioning-induced protection against brain ischemia in rodents. PLoS One 9(6):e99526. doi:10.1371/journal.pone.0099526

    Article  PubMed  PubMed Central  Google Scholar 

  31. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231

    Article  CAS  PubMed  Google Scholar 

  32. Zhao X, Wu T, Chang CF, Wu H, Han X, Li Q, Gao Y, Li Q et al (2015a) Toxic role of prostaglandin E2 receptor EP1 after intracerebral hemorrhage in mice. Brain Behav Immun 46:293–310. doi:10.1016/j.bbi.2015.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Han X, Lan X, Li Q, Gao Y, Zhu W, Cheng T, Maruyama T, Wang J (2016) Inhibition of prostaglandin E2 receptor EP3 mitigates thrombin-induced brain injury. J Cereb Blood Flow Metab 36(6):1059–1074. doi:10.1177/0271678X15606462

    Article  CAS  PubMed  Google Scholar 

  34. Gavet O, Pines J (2010) Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 18(4):533–543. doi:10.1016/j.devcel.2010.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yin XP, Chen ZY, Zhou J, Wu D, Bao B (2015a) Mechanisms underlying the perifocal neuroprotective effect of the Nrf2-ARE signaling pathway after intracranial hemorrhage. Drug Des Devel Ther 9:5973–5986. doi:10.2147/DDDT.S79399

    PubMed  PubMed Central  Google Scholar 

  36. Yin XP, Zhou J, Wu D, Chen ZY, Bao B (2015b) Effects of that ATRA inhibits Nrf2-ARE pathway on glial cells activation after intracerebral hemorrhage. Int J Clin Exp Pathol 8(9):10436–10443

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao X, Sun G, Ting SM, Song S, Zhang J, Edwards NJ, Aronowski J (2015b) Cleaning up after ICH: the role of Nrf2 in modulating microglia function and hematoma clearance. J Neurochem 133(1):144–152. doi:10.1111/jnc.12974

    Article  CAS  PubMed  Google Scholar 

  38. Dang J, Brandenburg LO, Rosen C, Fragoulis A, Kipp M, Pufe T, Beyer C, Wruck CJ (2012) Nrf2 expression by neurons, astroglia, and microglia in the cerebral cortical penumbra of ischemic rats. J Mol Neurosci 46(3):578–584. doi:10.1007/s12031-011-9645-9

    Article  CAS  PubMed  Google Scholar 

  39. Trendelenburg G, Dirnagl U (2005) Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia 50(4):307–320. doi:10.1002/glia.20204

    Article  PubMed  Google Scholar 

  40. Park JS, Jung JS, Jeong YH, Hyun JW, Le TK, Kim DH, Choi EC, Kim HS (2011) Antioxidant mechanism of isoflavone metabolites in hydrogen peroxide-stimulated rat primary astrocytes: critical role of hemeoxygenase-1 and NQO1 expression. J Neurochem 119(5):909–919. doi:10.1111/j.1471-4159.2011.07395.x

    Article  CAS  PubMed  Google Scholar 

  41. Park JS, Lee YY, Kim J, Seo H, Kim HS (2016) Beta-Lapachone increases phase II antioxidant enzyme expression via NQO1-AMPK/PI3K-Nrf2/ARE signaling in rat primary astrocytes. Free Radic Biol Med 97:168–178. doi:10.1016/j.freeradbiomed.2016.05.024

    Article  CAS  PubMed  Google Scholar 

  42. Bell KF, Al-Mubarak B, Fowler JH, Baxter PS, Gupta K, Tsujita T, Chowdhry S, Patani R et al (2011) Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning. Proc Natl Acad Sci U S A 108(1):E1–E2 . doi:10.1073/pnas.1015229108author reply E3-4

    Article  CAS  PubMed  Google Scholar 

  43. Haskew-Layton RE, Payappilly JB, Smirnova NA, Ma TC, Chan KK, Murphy TH, Guo H, Langley B et al (2010) Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway. Proc Natl Acad Sci U S A 107(40):17385–17390. doi:10.1073/pnas.1003996107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qosa H, Lichter J, Sarlo M, Markandaiah SS, McAvoy K, Richard JP, Jablonski MR, Maragakis NJ et al (2016) Astrocytes drive upregulation of the multidrug resistance transporter ABCB1 (p-glycoprotein) in endothelial cells of the blood-brain barrier in mutant superoxide dismutase 1-linked amyotrophic lateral sclerosis. Glia 64(8):1298–1313. doi:10.1002/glia.23003

    Article  PubMed  PubMed Central  Google Scholar 

  45. Draheim T, Liessem A, Scheld M, Wilms F, Weissflog M, Denecke B, Kensler TW, Zendedel A et al (2016) Activation of the astrocytic Nrf2/ARE system ameliorates the formation of demyelinating lesions in a multiple sclerosis animal model. Glia 64(12):2219–2230. doi:10.1002/glia.23058

    Article  CAS  PubMed  Google Scholar 

  46. Baxter PS, Hardingham GE (2016) Adaptive regulation of the brain’s antioxidant defences by neurons and astrocytes. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2016.06.027

    PubMed  PubMed Central  Google Scholar 

  47. Simoni J, Simoni G, Moeller JF, Feola M, Griswold JA, Wesson DE (2012) Adenosine-5′-triphosphate-adenosine-glutathione cross-linked hemoglobin as erythropoiesis-stimulating agent. Artif Organs 36(2):139–150. doi:10.1111/j.1525-1594.2011.01431.x

    Article  CAS  PubMed  Google Scholar 

  48. Bahia PK, Rattray M, Williams RJ (2008) Dietary flavonoid (−)epicatechin stimulates phosphatidylinositol 3-kinase-dependent anti-oxidant response element activity and up-regulates glutathione in cortical astrocytes. J Neurochem 106(5):2194–2204. doi:10.1111/j.1471-4159.2008.05542.x

    CAS  PubMed  Google Scholar 

  49. Liu B, Hu B, Shao S, Wu W, Fan L, Bai G, Shang P, Wang X (2015) CD163/hemoglobin oxygenase-1 pathway regulates inflammation in hematoma surrounding tissues after intracerebral hemorrhage. Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association 24(12):2800–2809. doi:10.1016/j.jstrokecerebrovasdis.2015.08.013

    Article  Google Scholar 

  50. Li X, Li C, Hou L, He M, Song G, Ren S, Han C (2015) Higher level of serum heme oxygenase-1 in patients with intracerebral hemorrhage. Int Surg 100(7–8):1220–1224. doi:10.9738/INTSURG-D-14-00086.1

    Article  PubMed  Google Scholar 

  51. Lu X, Chen-Roetling J, Regan RF (2014) Systemic hemin therapy attenuates blood-brain barrier disruption after intracerebral hemorrhage. Neurobiol Dis 70:245–251. doi:10.1016/j.nbd.2014.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gong Y, Tian H, Xi G, Keep RF, Hoff JT, Hua Y (2006) Systemic zinc protoporphyrin administration reduces intracerebral hemorrhage-induced brain injury. Acta Neurochir Suppl 96:232–236

    Article  CAS  PubMed  Google Scholar 

  53. Wagner KR, Hua Y, de Courten-Myers GM, Broderick JP, Nishimura RN, Lu SY, Dwyer BE (2000) Tin-mesoporphyrin, a potent heme oxygenase inhibitor, for treatment of intracerebral hemorrhage: in vivo and in vitro studies. Cell Mol Biol (Noisy-le-grand) 46(3):597–608

    CAS  Google Scholar 

  54. Koeppen AH, Dickson AC, Smith J (2004) Heme oxygenase in experimental intracerebral hemorrhage: the benefit of tin-mesoporphyrin. J Neuropathol Exp Neurol 63(6):587–597

    Article  CAS  PubMed  Google Scholar 

  55. Kwon KJ, Kim JN, Kim MK, Kim SY, Cho KS, Jeon SJ, Kim HY, Ryu JH et al (2013) Neuroprotective effects of valproic acid against hemin toxicity: possible involvement of the down-regulation of heme oxygenase-1 by regulating ubiquitin-proteasomal pathway. Neurochem Int 62(3):240–250. doi:10.1016/j.neuint.2012.12.019

    Article  CAS  PubMed  Google Scholar 

  56. Wang J, Dore S (2007) Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain 130(Pt 6):1643–1652. doi:10.1093/brain/awm095

    Article  PubMed  PubMed Central  Google Scholar 

  57. Harada H, Sugimoto R, Watanabe A, Taketani S, Okada K, Warabi E, Siow R, Itoh K et al (2008) Differential roles for Nrf2 and AP-1 in upregulation of HO-1 expression by arsenite in murine embryonic fibroblasts. Free Radic Res 42(4):297–304. doi:10.1080/10715760801975735

    Article  CAS  PubMed  Google Scholar 

  58. Jiang C, Zuo F, Wang Y, Wan J, Yang Z, Lu H, Chen W, Zang W et al (2016) Progesterone exerts neuroprotective effects and improves long-term neurologic outcome after intracerebral hemorrhage in middle-aged mice. Neurobiol Aging 42:13–24. doi:10.1016/j.neurobiolaging.2016.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shihab PK, Al-Roub A, Al-Ghanim M, Al-Mass A, Behbehani K, Ahmad R (2015) TLR2 and AP-1/NF-kappaB are involved in the regulation of MMP-9 elicited by heat killed Listeria monocytogenes in human monocytic THP-1 cells. J Inflamm 12:32. doi:10.1186/s12950-015-0077-0

    Article  Google Scholar 

  60. Wu H, Wu T, Hua W, Dong X, Gao Y, Zhao X, Chen W, Cao W et al (2015) PGE2 receptor agonist misoprostol protects brain against intracerebral hemorrhage in mice. Neurobiol Aging 36(3):1439–1450. doi:10.1016/j.neurobiolaging.2014.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu H, Wu T, Han X, Wan J, Jiang C, Chen W, Lu H, Yang Q et al (2016) Cerebroprotection by the neuronal PGE2 receptor EP2 after intracerebral hemorrhage in middle-aged mice. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism: in press. doi:10.1177/0271678X15625351

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health R01NS078026 and R01AT007317 (JW) and by the American Heart Association Mid-Atlantic Affiliate Grant-in-Aid (13GRNT15730001 to JW) and Postdoctoral Fellowship Awards (15POST25090114 to X. Lan and 14POST20140003 to X. Han). The authors thank Tian Cheng and Jieru Wan for the Western blotting technical support, Wenzhu Wang for the blind analysis of immunostaining, and Claire Levine for the assistance with manuscript preparation. We thank Raymond Koehler, Zengjin Yang, and all the Wang lab members for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Ethics declarations

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Fig. 1

(DOCX 140 kb)

Supplementary Fig. 2

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, X., Han, X., Li, Q. et al. (−)-Epicatechin, a Natural Flavonoid Compound, Protects Astrocytes Against Hemoglobin Toxicity via Nrf2 and AP-1 Signaling Pathways. Mol Neurobiol 54, 7898–7907 (2017). https://doi.org/10.1007/s12035-016-0271-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0271-y

Keywords

Navigation