Skip to main content

Advertisement

Log in

Nuclear Accumulation of Histone Deacetylase 4 (HDAC4) Exerts Neurotoxicity in Models of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Histone deacetylase 4 (HDAC4) is a class II HDAC which is highly expressed in the brain. Previous reports have shown that HDAC4 is essential for normal brain physiology and its deregulation leads to several neurodegenerative disorders. However, it remains unclear whether dysregulation of HDAC4 is specifically involved in the development of Parkinson’s disease. In this study, we demonstrate that intracellular trafficking of HDAC4 is important in regulating dopaminergic cell death. While HDAC4 normally localizes to the cytoplasm, nuclear accumulation of HDAC4 was observed in dopaminergic neurons overexpressing A53T mutant α-synuclein treated with MPP+/MPTP in vitro and in vivo. Nuclear-localized HDAC4 repressed cAMP response element-binding protein (CREB) and myocyte enhancer factor 2A (MEF2A), altered neuronal gene expression, and promoted neuronal apoptosis. Furthermore, cytoplasm-to-nucleus shuttling of HDAC4 was determined by its phosphorylation status, which was regulated by PP2A and PKCε. Treatment with PKCε-specific activators, DCP-LA or Bryostatin 1, provided neuroprotection against MPP+ toxicity in a dose-dependent manner. In summary, our research illustrated that intracellular trafficking of HDAC4 contributes to the vulnerability of cells expressing pathogenic α-synuclein mutants in response to oxidative stress and compounds which maintain cytoplasmic localization of HDAC4 such as PKCε activators that may serve as therapeutic agents for Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  CAS  PubMed  Google Scholar 

  2. Schapira AH (2009) Neurobiology and treatment of Parkinson’s disease. Trends Pharmacol Sci 30(1):41–47. doi:10.1016/j.tips.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  3. Sando R 3rd, Gounko N, Pieraut S, Liao L, Yates J 3rd, Maximov A (2012) HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell 151(4):821–834. doi:10.1016/j.cell.2012.09.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Taniguchi M, Carreira MB, Smith LN, Zirlin BC, Neve RL, Cowan CW (2012) Histone deacetylase 5 limits cocaine reward through cAMP-induced nuclear import. Neuron 73(1):108–120. doi:10.1016/j.neuron.2011.10.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mielcarek M, Zielonka D, Carnemolla A, Marcinkowski JT, Guidez F (2015) HDAC4 as a potential therapeutic target in neurodegenerative diseases: a summary of recent achievements. Front Cell Neurosci 9:42. doi:10.3389/fncel.2015.00042

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fitzsimons HL (2015) The class IIa histone deacetylase HDAC4 and neuronal function: nuclear nuisance and cytoplasmic stalwart? Neurobiol Learn Mem 123:149–158. doi:10.1016/j.nlm.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  7. Bertos NR, Wang AH, Yang XJ (2001) Class II histone deacetylases: structure, function, and regulation. Biochemistry and cell biology = Biochimie et biologie cellulaire 79(3):243–252

    Article  CAS  PubMed  Google Scholar 

  8. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42. doi:10.1038/nrg2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McKinsey TA, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408(6808):106–111. doi:10.1038/35040593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang AH, Kruhlak MJ, Wu J, Bertos NR, Vezmar M, Posner BI, Bazett-Jones DP, Yang XJ (2000) Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol Cell Biol 20(18):6904–6912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mathias RA, Guise AJ, Cristea IM (2015) Post-translational modifications regulate class IIa histone deacetylase (HDAC) function in health and disease. Molecular & cellular proteomics : MCP 14(3):456–470. doi:10.1074/mcp.O114.046565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Backs J, Worst BC, Lehmann LH, Patrick DM, Jebessa Z, Kreusser MM, Sun Q, Chen L et al (2011) Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J Cell Biol 195(3):403–415. doi:10.1083/jcb.201105063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN (2006) CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 116(7):1853–1864. doi:10.1172/JCI27438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM et al (2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145(4):607–621. doi:10.1016/j.cell.2011.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA (2004) Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24(19):8374–8385. doi:10.1128/mcb.24.19.8374-8385.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen B, Cepko CL (2009) HDAC4 regulates neuronal survival in normal and diseased retinas. Science 323(5911):256–259. doi:10.1126/science.1166226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li J, Chen J, Ricupero CL, Hart RP, Schwartz MS, Kusnecov A, Herrup K (2012) Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med 18(5):783–790. doi:10.1038/nm.2709

    Article  PubMed  PubMed Central  Google Scholar 

  18. Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 18(18):5099–5107. doi:10.1093/emboj/18.18.5099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bolger TA, Yao TP (2005) Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. The Journal of neuroscience : the official journal of the Society for Neuroscience 25(41):9544–9553. doi:10.1523/JNEUROSCI.1826-05.2005

    Article  CAS  Google Scholar 

  20. Takahashi-Fujigasaki J, Fujigasaki H (2006) Histone deacetylase (HDAC) 4 involvement in both Lewy and Marinesco bodies. Neuropathol Appl Neurobiol 32(5):562–566. doi:10.1111/j.1365-2990.2006.00733.x

    Article  CAS  PubMed  Google Scholar 

  21. Lee VM, Trojanowski JQ (2006) Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52(1):33–38. doi:10.1016/j.neuron.2006.09.026

    Article  CAS  PubMed  Google Scholar 

  22. Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C, Lichtner P et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312. doi:10.1038/ng.487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, Kawaguchi T, Tsunoda T et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41(12):1303–1307. doi:10.1038/ng.485

    Article  CAS  PubMed  Google Scholar 

  24. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306. doi:10.1038/81834

    Article  CAS  PubMed  Google Scholar 

  25. Tanner CM (2010) Advances in environmental epidemiology. Movement Disorders: Official Journal of the Movement Disorder Society 25(Suppl 1):S58–S62. doi:10.1002/mds.22721

    Article  Google Scholar 

  26. Nieto M, Gil-Bea FJ, Dalfo E, Cuadrado M, Cabodevilla F, Sanchez B, Catena S, Sesma T et al (2006) Increased sensitivity to MPTP in human alpha-synuclein A30P transgenic mice. Neurobiol Aging 27(6):848–856. doi:10.1016/j.neurobiolaging.2005.04.010

    Article  CAS  PubMed  Google Scholar 

  27. Yu WH, Matsuoka Y, Sziraki I, Hashim A, Lafrancois J, Sershen H, Duff KE (2008) Increased dopaminergic neuron sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in transgenic mice expressing mutant A53T alpha-synuclein. Neurochem Res 33(5):902–911. doi:10.1007/s11064-007-9533-4

    Article  CAS  PubMed  Google Scholar 

  28. Norris EH, Uryu K, Leight S, Giasson BI, Trojanowski JQ, Lee VM (2007) Pesticide exposure exacerbates alpha-synucleinopathy in an A53T transgenic mouse model. Am J Pathol 170(2):658–666. doi:10.2353/ajpath.2007.060359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee M, Hyun D, Halliwell B, Jenner P (2001) Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J Neurochem 76(4):998–1009

    Article  CAS  PubMed  Google Scholar 

  30. Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, Larsen KE, Staal R, Tieu K et al (2002) Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 99(22):14524–14529. doi:10.1073/pnas.172514599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34(4):521–533

    Article  CAS  PubMed  Google Scholar 

  32. Feng L, Wang CY, Jiang H, Oho C, Mizuno K, Dugich-Djordjevic M, Lu B (1999) Differential effects of GDNF and BDNF on cultured ventral mesencephalic neurons. Brain Res Mol Brain Res 66(1–2):62–70

    Article  CAS  PubMed  Google Scholar 

  33. Garrido-Garcia A, Andres-Pans B, Duran-Trio L, Diez-Guerra FJ (2009) Activity-dependent translocation of neurogranin to neuronal nuclei. The Biochemical Journal 424(3):419–429. doi:10.1042/BJ20091071

    Article  CAS  PubMed  Google Scholar 

  34. Chawla S, Vanhoutte P, Arnold FJ, Huang CL, Bading H (2003) Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J Neurochem 85(1):151–159

    Article  CAS  PubMed  Google Scholar 

  35. Paroni G, Cernotta N, Dello Russo C, Gallinari P, Pallaoro M, Foti C, Talamo F, Orsatti L et al (2008) PP2A regulates HDAC4 nuclear import. Mol Biol Cell 19(2):655–667. doi:10.1091/mbc.E07-06-0623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimizu E, Nakatani T, He Z, Partridge NC (2014) Parathyroid hormone regulates histone deacetylase (HDAC) 4 through protein kinase A-mediated phosphorylation and dephosphorylation in osteoblastic cells. J Biol Chem 289(31):21340–21350. doi:10.1074/jbc.M114.550699

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cho Y, Sloutsky R, Naegle KM, Cavalli V (2013) Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 155(4):894–908. doi:10.1016/j.cell.2013.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B (1999) Alpha-synuclein shares physical and functional homology with 14-3-3 proteins. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 19(14):5782–5791

    CAS  Google Scholar 

  39. Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ (2007) Distribution of histone deacetylases 1-11 in the rat brain. Journal of Molecular Neuroscience: MN 31(1):47–58

    Article  CAS  PubMed  Google Scholar 

  40. Salian-Mehta S, Xu M, McKinsey TA, Tobet S, Wierman ME (2015) Novel interaction of class IIb histone deacetylase 6 (HDAC6) with class IIa HDAC9 controls gonadotropin releasing hormone (GnRH) neuronal cell survival and movement. J Biol Chem 290(22):14045–14056. doi:10.1074/jbc.M115.640482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sen A, Nelson TJ, Alkon DL (2015) ApoE4 and Abeta oligomers reduce BDNF expression via HDAC nuclear translocation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 35(19):7538–7551. doi:10.1523/JNEUROSCI.0260-15.2015

    Article  CAS  Google Scholar 

  42. Yang Y, Qin X, Liu S, Li J, Zhu X, Gao T, Wang X (2011) Peroxisome proliferator-activated receptor gamma is inhibited by histone deacetylase 4 in cortical neurons under oxidative stress. J Neurochem 118(3):429–439. doi:10.1111/j.1471-4159.2011.07316.x

    Article  CAS  PubMed  Google Scholar 

  43. Mielcarek M, Landles C, Weiss A, Bradaia A, Seredenina T, Inuabasi L, Osborne GF, Wadel K et al (2013) HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol 11(11):e1001717. doi:10.1371/journal.pbio.1001717

    Article  PubMed  PubMed Central  Google Scholar 

  44. Majdzadeh N, Wang L, Morrison BE, Bassel-Duby R, Olson EN, D’Mello SR (2008) HDAC4 inhibits cell-cycle progression and protects neurons from cell death. Developmental Neurobiology 68(8):1076–1092. doi:10.1002/dneu.20637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Paroni G, Fontanini A, Cernotta N, Foti C, Gupta MP, Yang XJ, Fasino D, Brancolini C (2007) Dephosphorylation and caspase processing generate distinct nuclear pools of histone deacetylase 4. Mol Cell Biol 27(19):6718–6732. doi:10.1128/MCB.00853-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Paroni G, Mizzau M, Henderson C, Del Sal G, Schneider C, Brancolini C (2004) Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis. Mol Biol Cell 15(6):2804–2818. doi:10.1091/mbc.E03-08-0624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wetsel WC, Khan WA, Merchenthaler I, Rivera H, Halpern AE, Phung HM, Negro-Vilar A, Hannun YA (1992) Tissue and cellular distribution of the extended family of protein kinase C isoenzymes. J Cell Biol 117(1):121–133

    Article  CAS  PubMed  Google Scholar 

  48. Khan TK, Sen A, Hongpaisan J, Lim CS, Nelson TJ, Alkon DL (2015) PKCε deficits in Alzheimer’s disease brains and skin fibroblasts. J Alzheimers Dis 43(2):491–509

    CAS  PubMed  Google Scholar 

  49. Hongpaisan J, Sun MK, Alkon DL (2011) PKC epsilon activation prevents synaptic loss, Abeta elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 31(2):630–643. doi:10.1523/jneurosci.5209-10.2011

    Article  CAS  Google Scholar 

  50. Feng SJ, Li DG, Li Y, Yang X, Han S, Li JF (2013) Insight into hypoxic preconditioning and ischemic injury through determination of nPKC epsilon-interacting proteins in mouse brain. Neurochem Int 63(2):69–79. doi:10.1016/j.neuint.2013.04.011

    Article  CAS  PubMed  Google Scholar 

  51. Sun MK, Hongpaisan J, Nelson TJ, Alkon DL (2008) Poststroke neuronal rescue and synaptogenesis mediated in vivo by protein kinase C in adult brains. Proc Natl Acad Sci USA 105(36):13620–13625. doi:10.1073/pnas.0805952105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fujita M, Sugama S, Nakai M, Takenouchi T, Wei J, Urano T, Inoue S, Hashimoto M (2007) Alpha-synuclein stimulates differentiation of osteosarcoma cells: relevance to down-regulation of proteasome activity. J Biol Chem 282(8):5736–5748. doi:10.1074/jbc.M606175200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge that the pcDNA-HDAC4.3SA-FLAG was a gift from Tso-Pang Yao. This work was supported by grants from “Key New Drug Creation and Manufacturing Program” of the National Science & Technology Major Project (2014ZX09102-001-05) and the Scientific Innovation Project of the Chinese Academy of Sciences (XDA12040304). All experiments were conducted in compliance with the ARRIVE guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linyin Feng.

Ethics declarations

Conflict of Interests

There is no conflict of interests to declare.

Electronic supplementary material

ESM 1

(DOCX 3060 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Yang, X., Zhang, L. et al. Nuclear Accumulation of Histone Deacetylase 4 (HDAC4) Exerts Neurotoxicity in Models of Parkinson’s Disease. Mol Neurobiol 54, 6970–6983 (2017). https://doi.org/10.1007/s12035-016-0199-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0199-2

Keywords

Navigation