Skip to main content

Advertisement

Log in

Limited Effects of Prolonged Environmental Enrichment on the Pathology of 5XFAD Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The environmental enrichment (EE) paradigm is regarded as a useful tool to create a physical and intellectual stimulation for laboratory rodents and has been used in a variety of Alzheimer disease (AD) mouse models. However, the results of these studies have been conflicting as EE had inconsistent effects on memory performance, Aβ deposition, inflammatory status and other pathological outcomes depending on the AD model. Here, we studied the influence of a lifelong EE on the widely used 5XFAD mouse model, representing the main pathological features of AD. Although 11 months of enriched housing led to an improved survival rate and a partial rescue of motor performance, no beneficial effects in terms of anxiety phenotype, working memory performance, Aβ plaque load, Aβ1–42 levels, endogenous APP processing and inflammatory status were observed in 5XFAD mice. Concordantly, no changes in expression levels of BACE1 or Aβ-degrading enzymes like neprilysin or insulin-degrading enzyme could be detected in active mice. The 5XFAD model develops a relatively fast and aggressive pathology and therefore presents a model for early onset familial AD. Our results suggest that an intervention like EE might be too mild to counteract the fast disease progression seen in this model. Therefore, our data provide evidence that the effects of physical and cognitive stimulation vary depending on the severity of the pathology of the model and therefore might be more beneficial in models developing a milder AD phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Friedland RP, Fritsch T, Smyth KA, Koss E, Lerner AJ, Chen CH, Petot GJ, Debanne SM (2001) Patients with Alzheimer’s disease have reduced activities in midlife compared with healthy control-group members. Proc Natl Acad Sci U S A 98(6):3440–3445. doi:10.1073/pnas.061002998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rovio S, Kareholt I, Helkala EL, Viitanen M, Winblad B, Tuomilehto J, Soininen H, Nissinen A et al (2005) Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol 4(11):705–711. doi:10.1016/S1474-4422(05)70198-8

    Article  PubMed  Google Scholar 

  3. Tolppanen AM, Solomon A, Kulmala J, Kareholt I, Ngandu T, Rusanen M, Laatikainen T, Soininen H et al (2015) Leisure-time physical activity from mid- to late life, body mass index, and risk of dementia. Alzheimer's & dementia : the journal of the Alzheimer's Association 11(4):434–443.e436. doi:10.1016/j.jalz.2014.01.008

    Article  Google Scholar 

  4. Ke H-C, Huang H-J, Liang K-C, Hsieh-Li HM (2011) Selective improvement of cognitive function in adult and aged APP/PS1 transgenic mice by continuous non-shock treadmill exercise. Brain Res 1403(0):1–11. doi:10.1016/j.brainres.2011.05.056

    Article  CAS  PubMed  Google Scholar 

  5. Liu H-L, Zhao G, Zhang H, Shi L-D (2013) Long-term treadmill exercise inhibits the progression of Alzheimer’s disease-like neuropathology in the hippocampus of APP/PS1 transgenic mice. Behav Brain Res 256(0):261–272. doi:10.1016/j.bbr.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  6. Yuede CM, Zimmerman SD, Dong H, Kling MJ, Bero AW, Holtzman DM, Timson BF, Csernansky JG (2009) Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer's disease. Neurobiol Dis 35(3):426–432. doi:10.1016/j.nbd.2009.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu Y-S, Xu P, Pigino G, Brady ST, Larson J, Lazarov O (2010) Complex environment experience rescues impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alzheimer’s disease-linked APPswe/PS1ΔE9 mice. FASEB J 24(6):1667–1681. doi:10.1096/fj.09-136945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cotel MC, Jawhar S, Christensen DZ, Bayer TA, Wirths O (2012) Environmental enrichment fails to rescue working memory deficits, neuron loss, and neurogenesis in APP/PS1KI mice. Neurobiol Aging 33(1):96–107. doi:10.1016/j.neurobiolaging.2010.02.012

    Article  PubMed  Google Scholar 

  9. Richter H, Ambree O, Lewejohann L, Herring A, Keyvani K, Paulus W, Palme R, Touma C et al (2008) Wheel-running in a transgenic mouse model of Alzheimer's disease: protection or symptom? Behav Brain Res 190(1):74–84. doi:10.1016/j.bbr.2008.02.005

    Article  CAS  PubMed  Google Scholar 

  10. Parachikova A, Nichol KE, Cotman CW (2008) Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiol Dis 30(1):121–129. doi:10.1016/j.nbd.2007.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marlatt MW, Potter MC, Bayer TA, van Praag H, Lucassen PJ (2013) Prolonged running, not fluoxetine treatment, increases neurogenesis, but does not alter neuropathology, in the 3xTg mouse model of Alzheimer's disease. Curr Top Behav Neurosci 15:313–340. doi:10.1007/7854_2012_237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jankowsky JL, Xu G, Fromholt D, Gonzales V, Borchelt DR (2003) Environmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J Neuropathol Exp Neurol 62(12):1220–1227

    Article  CAS  PubMed  Google Scholar 

  13. Adlard PA, Perreau VM, Pop V, Cotman CW (2005) Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci 25(17):4217–4221

    Article  CAS  PubMed  Google Scholar 

  14. Nichol K, Deeny SP, Seif J, Camaclang K, Cotman CW (2009) Exercise improves cognition and hippocampal plasticity in APOE ε4 mice. Alzheimers Dement 5(4):287–294. doi:10.1016/j.jalz.2009.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140

    Article  CAS  PubMed  Google Scholar 

  16. Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O (2012) Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging 33(1):196.e129–196.e140. doi:10.1016/j.neurobiolaging.2010.05.027

    Article  Google Scholar 

  17. Hüttenrauch M, Salinas G, Wirths O (2016) Effects of long-term environmental enrichment on anxiety, memory, hippocampal plasticity and overall brain gene expression in C57BL6 mice. Front Mol Neurosci 9:62. doi:10.3389/fnmol.2016.00062

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wirths O, Multhaup G, Czech C, Feldmann N, Blanchard V, Tremp G, Beyreuther K, Pradier L et al (2002) Intraneuronal APP/A beta trafficking and plaque formation in beta-amyloid precursor protein and presenilin-1 transgenic mice. Brain Pathol 12(3):275–286. doi:10.1111/j.1750-3639.2002.tb00442.x

    Article  CAS  PubMed  Google Scholar 

  19. Huttenrauch M, Baches S, Gerth J, Bayer TA, Weggen S, Wirths O (2015) Neprilysin deficiency alters the neuropathological and behavioral phenotype in the 5XFAD mouse model of Alzheimer’s disease. J Alzheimers Dis 44:1291–1302. doi:10.3233/jad-142463

    PubMed  Google Scholar 

  20. Saul A, Sprenger F, Bayer TA, Wirths O (2013) Accelerated tau pathology with synaptic and neuronal loss in a novel triple transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 34(11):2564–2573. doi:10.1016/j.neurobiolaging.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  21. Hahn S, Bruning T, Ness J, Czirr E, Baches S, Gijsen H, Korth C, Pietrzik CU et al (2011) Presenilin-1 but not amyloid precursor protein mutations present in mouse models of Alzheimer’s disease attenuate the response of cultured cells to gamma-secretase modulators regardless of their potency and structure. J Neurochem 116(3):385–395. doi:10.1111/j.1471-4159.2010.07118.x

    Article  CAS  PubMed  Google Scholar 

  22. Brockhaus M, Grunberg J, Rohrig S, Loetscher H, Wittenburg N, Baumeister R, Jacobsen H, Haass C (1998) Caspase-mediated cleavage is not required for the activity of presenilins in amyloidogenesis and NOTCH signaling. Neuroreport 9(7):1481–1486

    Article  CAS  PubMed  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  24. Hillmann A, Hahn S, Schilling S, Hoffmann T, Demuth HU, Bulic B, Schneider-Axmann T, Bayer TA et al (2012) No improvement after chronic ibuprofen treatment in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging 33(4):833.e839–833.e850. doi:10.1016/j.neurobiolaging.2011.08.006

    Article  Google Scholar 

  25. Bhattacharya S, Haertel C, Maelicke A, Montag D (2014) Galantamine slows down plaque formation and behavioral decline in the 5XFAD mouse model of Alzheimer’s disease. PLoS One 9(2):e89454. doi:10.1371/journal.pone.0089454

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bouter Y, Kacprowski T, Weissmann R, Dietrich K, Borgers H, Brauss A, Sperling C, Wirths O et al (2014) Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer’s disease by deep sequencing. Front Aging Neurosci 6:75. doi:10.3389/fnagi.2014.00075

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wittnam JL, Portelius E, Zetterberg H, Gustavsson MK, Schilling S, Koch B, Demuth H-U, Blennow K et al (2012) Pyroglutamate amyloid β (Aβ) aggravates behavioral deficits in transgenic amyloid mouse model for Alzheimer disease. J Biol Chem 287(11):8154–8162. doi:10.1074/jbc.M111.308601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25(6):295–301. doi:10.1016/S0166-2236(02)02143-4

    Article  CAS  PubMed  Google Scholar 

  29. Neeper SA, Gómez-Pinilla F, Choi J, Cotman CW (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726(1–2):49–56. doi:10.1016/0006-8993(96)00273-9

    Article  CAS  PubMed  Google Scholar 

  30. van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2(3):266–270. doi:10.1038/6368

    Article  PubMed  Google Scholar 

  31. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386(6624):493–495. doi:10.1038/386493a0

    Article  CAS  PubMed  Google Scholar 

  32. Tong L, Shen H, Perreau VM, Balazs R, Cotman CW (2001) Effects of exercise on Gene-expression profile in the rat hippocampus. Neurobiol Dis 8(6):1046–1056. doi:10.1006/nbdi.2001.0427

    Article  CAS  PubMed  Google Scholar 

  33. Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, Hersh LB, Sapolsky RM et al (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120(5):701–713. doi:10.1016/j.cell.2005.01.015

    Article  CAS  PubMed  Google Scholar 

  34. Park SW, Kim JH, Mook-Jung I, Kim K-W, Park WJ, Park KH, Kim JH (2014) Intracellular amyloid beta alters the tight junction of retinal pigment epithelium in 5XFAD mice. Neurobiol Aging 35(9):2013–2020. doi:10.1016/j.neurobiolaging.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  35. Calhoun ME, Burgermeister P, Phinney AL, Stalder M, Tolnay M, Wiederhold KH, Abramowski D, Sturchler-Pierrat C et al (1999) Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci U S A 96(24):14088–14093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Dorpe J, Smeijers L, Dewachter I, Nuyens D, Spittaels K, Van Den Haute C, Mercken M, Moechars D et al (2000) Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am J Pathol 157(4):1283–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lesuis SL, Maurin H, Borghgraef P, Lucassen PJ, Leuven FV, Krugers HJ (2016) Positive and negative early life experiences differentially modulate long term survival and amyloid protein levels in a mouse model of Alzheimer’s disease. 2016. doi:10.18632/oncotarget.9776

  38. Héraud C, Goufak D, Ando K, Leroy K, Suain V, Yilmaz Z, De Decker R, Authelet M et al (2014) Increased misfolding and truncation of tau in APP/PS1/tau transgenic mice compared to mutant tau mice. Neurobiol Dis 62:100–112. doi:10.1016/j.nbd.2013.09.010

    Article  PubMed  Google Scholar 

  39. Scarmeas N, Luchsinger JA, Brickman AM, Cosentino S, Schupf N, Xin-Tang M, Gu Y, Stern Y (2011) Physical activity and Alzheimer disease course. Am J Geriatr Psychiatry 19(5):471–481. doi:10.1097/JGP.0b013e3181eb00a9

    Article  PubMed  PubMed Central  Google Scholar 

  40. Verret L, Krezymon A, Halley H, Trouche S, Zerwas M, Lazouret M, Lassalle J-M, Rampon C (2013) Transient enriched housing before amyloidosis onset sustains cognitive improvement in Tg2576 mice. Neurobiol Aging 34(1):211–225. doi:10.1016/j.neurobiolaging.2012.05.013

    Article  CAS  PubMed  Google Scholar 

  41. Wang Q, Xu Z, Tang J, Sun J, Gao J, Wu T, Xiao M (2013) Voluntary exercise counteracts Aβ25-35-induced memory impairment in mice. Behav Brain Res 256(0):618–625. doi:10.1016/j.bbr.2013.09.024

    Article  PubMed  Google Scholar 

  42. Dao AT, Zagaar MA, Levine AT, Salim S, Eriksen JL, Alkadhi KA (2013) Treadmill exercise prevents learning and memory impairment in Alzheimer’s disease-like pathology. Curr Alzheimer Res 10(5):507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ambree O, Leimer U, Herring A, Gortz N, Sachser N, Heneka MT, Paulus W, Keyvani K (2006) Reduction of amyloid angiopathy and Abeta plaque burden after enriched housing in TgCRND8 mice: involvement of multiple pathways. Am J Pathol 169(2):544–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, van de Steeg E et al (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165(4):1289–1300. doi:10.1016/S0002-9440(10)63388-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Eimer WA, Vassar R (2013) Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Abeta42 accumulation and caspase-3 activation. Mol Neurodegener 8(1):2. doi:10.1186/1750-1326-8-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wirths O, Bayer TA (2012) Intraneuronal Abeta accumulation and neurodegeneration: lessons from transgenic models. Life Sci 91(23–24):1148–1152. doi:10.1016/j.lfs.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  47. Arendash GW, Garcia MF, Costa DA, Cracchiolo JR, Wefes IM, Potter H (2004) Environmental enrichment improves cognition in aged Alzheimer’s transgenic mice despite stable beta-amyloid deposition. Neuroreport 15(11):1751–1754. doi:10.1097/01.wnr.0000137183.68847.4e

    Article  PubMed  Google Scholar 

  48. Wolf SA, Kronenberg G, Lehmann K, Blankenship A, Overall R, Staufenbiel M, Kempermann G (2006) Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biol Psychiatry 60(12):1314–1323

    Article  CAS  PubMed  Google Scholar 

  49. Montarolo F, Parolisi R, Hoxha E, Boda E, Tempia F (2013) Early enriched environment exposure protects spatial memory and accelerates amyloid plaque formation in APPSwe/PS1L166P mice. PLoS One 8(7):e69381. doi:10.1371/journal.pone.0069381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lewejohann L, Reefmann N, Widmann P, Ambree O, Herring A, Keyvani K, Paulus W, Sachser N (2009) Transgenic Alzheimer mice in a semi-naturalistic environment: more plaques, yet not compromised in daily life. Behav Brain Res 201(1):99–102. doi:10.1016/j.bbr.2009.01.037

    Article  CAS  PubMed  Google Scholar 

  51. Richard BC, Kurdakova A, Baches S, Bayer TA, Weggen S, Wirths O (2015) Gene dosage dependent aggravation of the neurological phenotype in the 5XFAD mouse model of Alzheimer's disease. J Alzheimers Dis 45:1223–1236. doi:10.3233/jad-143120

    CAS  PubMed  Google Scholar 

  52. Beauquis J, Pavía P, Pomilio C, Vinuesa A, Podlutskaya N, Galvan V, Saravia F (2013) Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer's disease. Exp Neurol 239(0):28–37. doi:10.1016/j.expneurol.2012.09.009

    Article  CAS  PubMed  Google Scholar 

  53. Rao SK, Ross JM, Harrison FE, Bernardo A, Reiserer RS, Reiserer RS, Mobley JA, McDonald MP (2015) Differential proteomic and behavioral effects of long-term voluntary exercise in wild-type and APP-overexpressing transgenics. Neurobiol Dis 78(0):45–55. doi:10.1016/j.nbd.2015.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Herring A, Münster Y, Metzdorf J, Bolczek B, Krüssel S, Krieter D, Yavuz I, Karim F et al (2016) Late running is not too late against Alzheimer’s pathology. Neurobiol Dis 94:44–54. doi:10.1016/j.nbd.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  55. Nichol KE, Poon WW, Parachikova AI, Cribbs DH, Glabe CG, Cotman CW (2008) Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid. J Neuroinflammation 5:13. doi:10.1186/1742-2094-5-13

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kang E-B, Kwon I-S, Koo J-H, Kim E-J, Kim C-H, Lee J, Yang C-H, Lee Y-I et al (2013) Treadmill exercise represses neuronal cell death and inflammation during Aβ-induced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice. Apoptosis 18(11):1332–1347. doi:10.1007/s10495-013-0884-9

    Article  CAS  PubMed  Google Scholar 

  57. Rodriguez JJ, Terzieva S, Olabarria M, Lanza RG, Verkhratsky A (2013) Enriched environment and physical activity reverse astrogliodegeneration in the hippocampus of AD transgenic mice. Cell Death Dis 4:e678. doi:10.1038/cddis.2013.194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rodríguez JJ, Noristani HN, Verkhratsky A (2015) Microglial response to Alzheimer’s disease is differentially modulated by voluntary wheel running and enriched environments. Brain Struct Funct 220(2):941–953. doi:10.1007/s00429-013-0693-5

    Article  PubMed  Google Scholar 

  59. Peng S, Garzon DJ, Marchese M, Klein W, Ginsberg SD, Francis BM, Mount HT, Mufson EJ et al (2009) Decreased brain-derived neurotrophic factor depends on amyloid aggregation state in transgenic mouse models of Alzheimer’s disease. J Neurosci 29(29):9321–9329. doi:10.1523/jneurosci.4736-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Phillips C, Akif Baktir M, Das D, Lin B, Salehi A (2015) The link between physical activity and cognitive dysfunction in Alzheimer disease. Phys Ther 95(7):1046–1060. doi:10.2522/ptj.20140212

    Article  PubMed  Google Scholar 

  61. Alvarez-Lopez MJ, Castro-Freire M, Cosin-Tomas M, Sanchez-Roige S, Lalanza JF, Del Valle J, Parrizas M, Camins A et al (2013) Long-term exercise modulates hippocampal gene expression in senescent female mice. J Alzheimers Dis 33(4):1177–1190. doi:10.3233/jad-121264

    CAS  PubMed  Google Scholar 

  62. Liu H-l, Zhao G, Cai K, Zhao H-h, Shi L-d (2011) Treadmill exercise prevents decline in spatial learning and memory in APP/PS1 transgenic mice through improvement of hippocampal long-term potentiation. Behav Brain Res 218(2):308–314. doi:10.1016/j.bbr.2010.12.030

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support of the Gerhard-Hunsmann-Stiftung is gratefully acknowledged. We thank Drs. Karlheinz Baumann and Manfred Brockhaus (F. Hoffmann-La Roche Ltd., Switzerland) for carboxyl terminus specific Abeta antibodies and Sandra Baches for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Wirths.

Electronic supplementary material

ESM 1

(PDF 308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hüttenrauch, M., Walter, S., Kaufmann, M. et al. Limited Effects of Prolonged Environmental Enrichment on the Pathology of 5XFAD Mice. Mol Neurobiol 54, 6542–6555 (2017). https://doi.org/10.1007/s12035-016-0167-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0167-x

Keywords

Navigation