Skip to main content

Advertisement

Log in

CSF microRNA Profiling in Alzheimer’s Disease: a Screening and Validation Study

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate gene expression through post-transcriptional repression of target genes. They have been shown to be implicated in the pathophysiology of Alzheimer’s disease (AD) and proposed as disease biomarkers. In the present work, we have studied the expression levels of 754 miRNAs in cerebrospinal fluid (CSF) from AD patients and control subjects. We have explored a first screening cohort (N = 20) and selected 12 miRNAs to be further tested in a second independent validation cohort (N = 69). We have found a significant upregulation of miR-222 and miR-125b in AD CSF. Of these, the association of miR-222 with AD is novel and reported here for the first time whereas upregulation of miR-125b has been previously reported in AD brain. Yet we do not find association with other miRNAs which were previously linked to AD. Our results shed light on potential underlying pathophysiological processes of AD and also point out the need for consensus procedures in CSF miRNA detection and data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization (2012) Dementia: a public health priority. Publ, WHO

    Google Scholar 

  2. Prince M, Wimo A, Guerchet M, et al. (2015) World Alzheimer report 2015: the global impact of dementia-an analysis of prevalence, incidence, cost and trends. Alzheimer’s Dis Int 84. doi:10.1111/j.0963-7214.2004.00293.x

  3. Jackson GA (2014) Drug treatments for Alzheimer’s disease. Nurs Times 110:24–26

    PubMed  Google Scholar 

  4. Molinuevo JL, Cummings JL, Dubois B, Scheltens P (2013) Early diagnosis and intervention in predementia Alzheimer’s disease. Med Clin North Am 97:363–502

    Article  PubMed  Google Scholar 

  5. Duits FH, Teunissen CE, Bouwman FH, et al. (2014) The cerebrospinal fluid “Alzheimer profile”: easily said, but what does it mean? Alzheimers, Dement

    Google Scholar 

  6. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  8. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858. doi:10.1126/science.1064921

    Article  CAS  PubMed  Google Scholar 

  9. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862. doi:10.1126/science.1065062

    Article  CAS  PubMed  Google Scholar 

  10. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864. doi:10.1126/science.1065329

    Article  CAS  PubMed  Google Scholar 

  11. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Cold Spring Harb Lab Press. Genome Res:92–105. doi:10.1101/gr.082701.108

  12. Kawahara H, Imai T, Okano H (2012) MicroRNAs in neural stem cells and neurogenesis. Front Neurosci 6:1–13. doi:10.3389/fnins.2012.00030

    Article  Google Scholar 

  13. Shenoy A, Blelloch RH (2014) Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol 15:565–576. doi:10.1038/nrm3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maciotta S, Meregalli M, Torrente Y (2013) The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 7:265. doi:10.3389/fncel.2013.00265

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fernández-Santiago R, Iranzo A, Gaig C, et al. (2015) MicroRNA association with synucleinopathy conversion in rapid eye movement behavior disorder. Ann Neurol 77:895–901. doi:10.1002/ana.24384

    Article  PubMed  Google Scholar 

  16. Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 18

  17. Lau P, Sala Frigerio C, De Strooper B (2014) Variance in the identification of microRNAs deregulated in Alzheimer’s disease and possible role of lincRNAs in the pathology: the need of larger datasets. Ageing Res Rev. doi:10.1016/j.arr.2014.02.006

    PubMed  Google Scholar 

  18. Schonrock N, Götz J (2012) Decoding the non-coding RNAs in Alzheimer’s disease. Cell Mol Life Sci 69:3543–3559. doi:10.1007/s00018-012-1125-z

    Article  CAS  PubMed  Google Scholar 

  19. Lau P, Bossers K, Janky R, et al. (2013) Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol Med 5:1613–1634. doi:10.1002/emmm.201201974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dorval V, Nelson PT, Hébert SS (2013) Circulating microRNAs in Alzheimer’s disease: the search for novel biomarkers. Front Mol Neurosci 6:24. doi:10.3389/fnmol.2013.00024

    PubMed  PubMed Central  Google Scholar 

  21. Kumar P, Dezso Z, MacKenzie C, et al. (2013) Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One 8:e69807. doi:10.1371/journal.pone.0069807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leidinger P, Backes C, Deutscher S, et al. (2013) A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 14:R78. doi:10.1186/gb-2013-14-7-r78

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tan L, J-T Y, Liu Q-Y, et al. (2014) Circulating miR-125b as a biomarker of Alzheimer’s disease. J Neurol Sci 336:52–56. doi:10.1016/j.jns.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  24. Sala Frigerio C, Lau P, Salta E, et al. (2013) Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease. Neurology 81:2103–2106. doi:10.1212/01.wnl.0000437306.37850.22

    Article  CAS  PubMed  Google Scholar 

  25. Kiko T, Nakagawa K, Tsuduki T, et al. (2014) MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J Alzheimers Dis 39:253–259. doi:10.3233/JAD-130932

    CAS  PubMed  Google Scholar 

  26. Müller M, Jäkel L, Bruinsma IB, et al. (2015) MicroRNA-29a is a candidate biomarker for Alzheimer’s disease in cell-free cerebrospinal fluid. Mol Neurobiol. doi:10.1007/s12035-015-9156-8

    PubMed Central  Google Scholar 

  27. Müller M, Kuiperij HB, Versleijen AAM, et al. (2016) Validation of microRNAs in cerebrospinal fluid as biomarkers for different forms of dementia in a multicenter study. J Alzheimers Dis 52:1321–1333. doi:10.3233/JAD-160038

    Article  PubMed  Google Scholar 

  28. McKhann GM, Knopman DS, Chertkow H, et al. (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269. doi:10.1016/j.jalz.2011.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guescini M, Sisti D, Rocchi MBL, et al. (2008) A new real-time PCR method to overcome significant quantitative inaccuracy due to slight amplification inhibition. BMC Bioinformatics 9:326. doi:10.1186/1471-2105-9-326

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pabinger S, Thallinger GG, Snajder R, et al. (2009) QPCR: application for real-time PCR data management and analysis. BMC Bioinformatics 10:268. doi:10.1186/1471-2105-10-268

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mestdagh P, Van Vlierberghe P, De Weer A, et al. (2009) A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 10:R64. doi:10.1186/gb-2009-10-6-r64

    Article  PubMed  PubMed Central  Google Scholar 

  32. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi:10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  33. Motulsky HJ, Brown RE (2006) Detecting outliers when fitting data with nonlinear regression - a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics 7:123. doi:10.1186/1471-2105-7-123

    Article  PubMed  PubMed Central  Google Scholar 

  34. Weber JA, Baxter DH, Zhang S, et al. (2010) The MicroRNA Spectrum in 12 body fluids. Clin Chem 56:1733–1741. doi:10.1373/clinchem.2010.147405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cogswell JP, Ward J, Taylor IA, et al. (2008) Identification of miRNA changes in Alzheimer ’ s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14:27–41

    Article  CAS  PubMed  Google Scholar 

  36. van Harten AC, Mulders J, Scheltens P, et al. (2015) Differential expression of microRNA in cerebrospinal fluid as a potential novel biomarker for Alzheimer’s disease. J Alzheimers Dis 47:243–252. doi:10.3233/JAD-140075

    Article  PubMed  Google Scholar 

  37. Sethi P, Lukiw WJ (2009) Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett 459:100–104. doi:10.1016/j.neulet.2009.04.052

    Article  CAS  PubMed  Google Scholar 

  38. Alexandrov PN, Dua P, Hill JM, et al. (2012) microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol 3:365–373

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Banzhaf-Strathmann J, Benito E, May S, et al. (2014) MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J 33:1667–1680. doi:10.15252/embj.201387576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pogue A, Cui J, Li Y, et al. (2010) Micro RNA-125b (miRNA-125b) function in astrogliosis and glial cell proliferation. Neurosci Lett 476:18–22. doi:10.1016/j.neulet.2010.03.054

    Article  CAS  PubMed  Google Scholar 

  41. Teixeira AL, Gomes M, Medeiros R (2012) EGFR signaling pathway and related-miRNAs in age-related diseases: the example of miR-221 and miR-222. Front Genet 3. doi:10.3389/fgene.2012.00286

  42. Müller M, Kuiperij HB, Claassen J a, et al. (2014) MicroRNAs in Alzheimer’s disease: differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiol Aging 35:152–158. doi:10.1016/j.neurobiolaging.2013.07.005

    Article  PubMed  Google Scholar 

  43. Denk J, Boelmans K, Siegismund C, et al. (2015) MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer’s disease. PLoS One 10:e0126423. doi:10.1371/journal.pone.0126423

    Article  PubMed  PubMed Central  Google Scholar 

  44. Burgos KL, Javaherian A, Bomprezzi R, et al. (2013) Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. Cold Spring Harb Lab Press. RNA:712–722. doi:10.1261/rna.036863.112.4

  45. Jensen SG, Lamy P, Rasmussen MH, et al. (2011) Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs. BMC Genomics 12:435. doi:10.1186/1471-2164-12-435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Redshaw N, Wilkes T, Whale A, et al. (2013) A comparison of miRNA isolation and RT-qPCR technologies and their effects on quantification accuracy and repeatability. BioTechniques 54:155–164. doi:10.2144/000114002

    Article  CAS  PubMed  Google Scholar 

  47. Life Technologies (2010) Megaplex ™ Primer Pools - Insert P/N 4401697 REV D.

  48. Life Technologies (2013) Protocol for running custom RT and preamplification pools on Custom TaqMan ® Array MicroRNA Cards. Quick Reference. Publication Part Number 4478705. Revision Date January 2013 (Rev. A).

Download references

Acknowledgments

This publication is part of the AETIONOMY project (Organising Mechanistic Knowledge about Neurodegenerative Diseases for the Improvement of Drug Development and Therapy) of the EU/EFPIA Innovative Medicines Initiative Joint Undertaking AETIONOMY grant n° 115568. This study was also supported by the project PI11/03023, integrated in the National R + D + I Plan and co-financed by ISCIII (Instituto de Salud Carlos III)-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-"Una manera de Hacer Europa”), by grants to JLM (Consolider CSD2010-00045) and to A. Lladó (PI14/00282, ISCIII, Cofinancia FEDER, Unión Europea, “Otra manera de hacer Europa”) from the Spanish Ministry of Economy and Competitiveness, and by grants to A. Lleó (PI11/03035-BIOMARKAPD, PI14/01561, and “Marató TV3” grant 20142610) and to JF (PI11/02425, PI14/01126, and “Marató TV3” grant 20141210), jointly funded by Fondo Europeo de Desarrollo Regional (FEDER-"Una manera de Hacer Europa”). LR is the recipient of a Miguel Servet grant as a senior investigator (CP2/00023).

We are grateful to Dr. Lourdes Mengual for the helpful discussion in miRNA detection and to Dr. M.O. Boldi from Research Center for Statistics (Geneva, Switzerland) for the help with the statistics.

This work was developed at the Centre de Recerca Biomèdica Cellex in Barcelona, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Molinuevo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed Consent

Written informed consent was obtained for all subjects.

Electronic supplementary material

Online Resource 1

(PDF 177 kb)

Online Resource 2

Expression levels in CSF in the validation phase of detectable (amplification in ≥50 % of the samples) but not significantly dysregulated miRNAs. Individual values of control subjects (CTR) are represented with circles, Alzheimer’s disease patients (AD) with squares, and horizontal lines show mean ± SD. (GIF 19 kb)

High Resolution Image (EPS 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dangla-Valls, A., Molinuevo, J.L., Altirriba, J. et al. CSF microRNA Profiling in Alzheimer’s Disease: a Screening and Validation Study. Mol Neurobiol 54, 6647–6654 (2017). https://doi.org/10.1007/s12035-016-0106-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0106-x

Keywords

Navigation