Skip to main content

Advertisement

Log in

Expression of Iron Transporters and Pathological Hallmarks of Parkinson’s and Alzheimer’s Diseases in the Brain of Young, Adult, and Aged Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Iron accumulates progressively in the brain with age; however, the cause is unknown. We hypothesized that iron accumulation may be associated with the age-induced changes in the expression of iron metabolism proteins in the brain. Here, we systematically investigated iron content and the expression of two major iron importers, transferrin receptor 1 (TfR1) and divalent metal transporter (DMT1), two iron exporters, ferroportin 1 (Fpn1) and ceruloplasmin (CP), and hepcidin, along with the pathological hallmarks of Parkinson’s (PD) and Alzheimer’s diseases (AD) in the brain of young (3 months), adult (12 months), and aged (24 months) rats. We demonstrated that age has a region-specific effect on iron transport proteins along with iron content in the cortex, striatum, hippocampus, and substantia nigra. We also found an age-dependent increase in hyperphosphorylated tau, total beta-amyloid, and neurotoxic oligomeric aggregates in the cortex and hippocampus as well as an increase in α-synuclein and a decrease in tyrosine hydroxylase positive neurons in the substantia nigra. Our findings suggest that the age-dependent increase in brain iron may be partly due to the age-induced increase in DMT1 expression, rather than TfR1 and Fpn1 expression, and also imply that the increased brain iron is associated with expression of the pathological hallmarks of AD and PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.L B, Connor JR, Jones BC (1993) Iron in the brain. Nutr Rev 51:157–170

    Google Scholar 

  2. Levenson CW, Tassabehji NM (2004) Iron and ageing: an introduction to iron regulatory mechanisms. Ageing Res Rev 3:251–263

    Article  CAS  PubMed  Google Scholar 

  3. Gelman BB (1995) Iron in CNS disease. J Neuropathol Exp Neurol 54:477–486

    Article  CAS  PubMed  Google Scholar 

  4. Andrews NC (1999) Disorders of iron metabolism. N Engl J Med 341:1986–1995

    Article  CAS  PubMed  Google Scholar 

  5. Ke Y, Qian ZM (2003) Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurol 2:246–253

    Article  CAS  PubMed  Google Scholar 

  6. Núñez MT, Urrutia P, Mena N, Aguirre P, Tapia V, Salazar J (2012) Iron toxicity in neurodegeneration. Biometals 25:761–776

    Article  PubMed  Google Scholar 

  7. Benkovic SA, Connor JR (1993) Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. J Comp Neurol 338:97–113

    Article  CAS  PubMed  Google Scholar 

  8. Roskams AJ, Connor JR (1994) Iron, transferrin, and ferritin in the rat brain during development and aging. J Neurochem 63:709–716

    Article  CAS  PubMed  Google Scholar 

  9. Hahn P, Song Y, Ying GS, He X, Beard J, Dunaief JL (2009) Age-dependent and gender-specific changes in mouse tissue iron by strain. Exp Gerontol 44:594–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hallgren B, Sourander P (1958) The effect of age on the non-haem in iron in the human brain. J Neurochem 3:41–51

    Article  CAS  PubMed  Google Scholar 

  11. Connor JR, Menzies SL, St Martin SM, Mufson EJ (1992) A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J Neurosci Res 31:75–83

    Article  CAS  PubMed  Google Scholar 

  12. Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ (1992) Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31:327–335

    Article  CAS  PubMed  Google Scholar 

  13. Bartzokis G, Sultzer D, Mintz J, Holt LE, Marx P, Phelan CK, Marder SR (1994) In vivo evaluation of brain iron in Alzheimer’s disease and normal subjects using MRI. Biol Psychiat 35:480–487

    Article  CAS  PubMed  Google Scholar 

  14. Bartzokis G, Lu PH, Tishler TA, Peters DG, Kosenko A, Barrall KA, Finn JP, Villablanca P, Laub G, Altshuler LL, Geschwind DH, Mintz J, Neely E, Connor JR (2010) Prevalent iron metabolism gene variants associated with increased brain ferritin iron in healthy older men. J Alzheimers Dis 20:333–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zecca L, Gallorini M, Schünemann V, Trautwein AX, Gerlach M, Riederer P, Vezzoni P, Tampellini D (2001) Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem 76:1766–1773

    Article  CAS  PubMed  Google Scholar 

  16. Daugherty A, Raz N (2013) Age-related differences in iron content of subcortical nuclei observed in vivo: a meta-analysis. NeuroImage 70:113–121

    Article  PubMed  Google Scholar 

  17. Smith MA, Harris PLR, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A 94:9866–9868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hirsch EC, Faucheux BA (1998) Iron metabolism and Parkinson’s disease. Mov Disord 13:39–45

    Article  PubMed  Google Scholar 

  19. Berg D, Gerlach M, Youdim MBH, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79:225–236

    Article  CAS  PubMed  Google Scholar 

  20. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  CAS  PubMed  Google Scholar 

  21. Dwyer BE, Zacharski LR, Balestra DJ, Lerner AJ, Perry G, Zhu X, Smith MA (2009) Getting the iron out phlebotomy for Alzheimer’s disease? Med Hypotheses 72:504–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qian ZM, Wang Q, Pu YM (1997) Brain iron and neurological disorders. Chin Med J 110:455–458

    CAS  PubMed  Google Scholar 

  23. Qian ZM, Ke Y (2001) Rethinking the role of ceruloplasmin in brain iron metabolism. Brain Res Rev 35:287–294

    Article  CAS  PubMed  Google Scholar 

  24. Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK, Wong BX, Adlard PA, Cherny RA, Lam LQ, Roberts BR, Volitakis I, Egan GF, McLean CA, Cappai R, Duce JA, Bush AI (2012) Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 18:291–295

    Article  CAS  PubMed  Google Scholar 

  25. Kawas C, Gray S, Brookmeyer R, Fozard J, Zonderman A (2000) Age-specific incidence rates of Alzheimer’s disease: the Baltimore Longitudinal Study of Aging. Neurology 54:2072–2077

    Article  CAS  PubMed  Google Scholar 

  26. Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB, Initiative A’s DN (2014) What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol 117C:20–40

    Article  Google Scholar 

  27. Baldereschi M, Di Carlo A, Rocca WA, Vanni P, Maggi S, Perissinotto E, Grigoletto F, Amaducci L, Inzitari D (2000) Parkinson’s disease and parkinsonism in a longitudinal study: two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging. Neurology 55:1358–1363

    Article  CAS  PubMed  Google Scholar 

  28. Surmeier DJ, Guzman JN, Sanchez J, Schumacker PT (2012) Physiological phenotype and vulnerability in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009290

    Article  PubMed  PubMed Central  Google Scholar 

  29. Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 14C:19–30

    Article  Google Scholar 

  30. Huang XT, Qian ZM, He X, Gong Q, Wu KC, Jiang LR, Lu LN, Zhu ZJ, Zhang HY, Yung WH, Ke Y (2014) Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer’s disease. Neurobiol Aging 35:1045–1054

    Article  CAS  PubMed  Google Scholar 

  31. Qian ZM, Wang Q (1998) Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res Rev 27:257–267

    Article  CAS  PubMed  Google Scholar 

  32. Ke Y, Chang YZ, Duan XL, Du JR, Zhu L, Wang K, Yang X, Ho KP, Qian ZM (2005) Age-dependent and iron-independent expression of two mRNA isoforms of divalent metal transporter 1 in rat brain. Neurobiol Aging 26:739–748

    Article  CAS  PubMed  Google Scholar 

  33. Chang YZ, Qian ZM, Wang K, Zhu L, Yang XD, Du JR, Jiang L, Ho KP, Wang Q, Ke Y (2005) Effects of development and iron status on ceruloplasmin expression in rat brain. J Cell Physiol 204:623–631

    Article  CAS  PubMed  Google Scholar 

  34. Qian ZM, Chang YZ, Zhu L, Yang L, Du JR, Ho KP, Wang Q, Li LZ, Wang CY, Ge X, Jing NL, Li L, Ke Y (2007) Development and iron-dependent expression of hephaestin in different brain regions of rats. J Cell Biochem 102:1225–1233

    Article  CAS  PubMed  Google Scholar 

  35. Qian ZM, Chang YZ, Leung G, Du JR, Zhu L, Wang Q, Niu L, Xu YJ, Yang L, Ho KP, Ke Y (2007) Expression of ferroportin1, hephaestin and ceruloplasmin in rat heart. Biochim Biophys Acta 177:527–532

    Article  Google Scholar 

  36. Wu XM, Qian ZM, Zhu L, Du F, Yung WH, Gong Q, Ke Y (2011) Neuroprotective effect of ligustilide against ischaemia-reperfusion injury via up-regulation of erythropoietin and down-regulation of RTP801. Br J Pharmacol 164:332–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang DH, Ke Y, Cheng YZ, Ho KP, Qian ZM (2002) Distribution of ferroportin1 protein in different regions of developing rat brain. Dev Neurosci 24:94–98

    Article  CAS  PubMed  Google Scholar 

  38. Ke Y, Qian ZM (2007) Brain iron metabolism: neurobiology and neurochemistry. Prog Neurobiol 83:149–173

    Article  CAS  PubMed  Google Scholar 

  39. Ge XH, Wang Q, Qian ZM, Zhu L, Du F, Yung WH, Yang L, Ke Y (2009) The iron regulatory hormone hepcidin reduces ferroportin 1 content and iron release in H9C2 cardiomyocytes. J Nutr Biochem 20:860–865

    Article  CAS  PubMed  Google Scholar 

  40. Zhao L, Qian ZM, Zhang C, Wing HY, Du F, Ya K (2008) Amyloid beta-peptide 31–35-induced neuronal apoptosis is mediated by caspase-dependent pathways via cAMP-dependent protein kinase A activation. Aging Cell 7:47–57

    Article  CAS  PubMed  Google Scholar 

  41. Maeda J, Zhang MR, Okauchi T, Ji B, Ono M, Hattori S, Kumata K, Iwata N, Saido TC, Trojanowski JQ, Lee VM, Staufenbiel M, Tomiyama T, Mori H, Fukumura T, Suhara T, Higuchi M (2011) In vivo positron emission tomographic imaging of glial responses to amyloid-beta and tau pathologies in mouse models of Alzheimer’s disease and related disorders. J Neurosci 31:4720–4730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  CAS  PubMed  Google Scholar 

  43. Chew KC, Ang ET, Tai YK, Tsang F, Lo SQ, Ong E, Ong WY, Shen HM, Lim KL, Dawson VL, Dawson TM, Soong TW (2011) Enhanced autophagy from chronic toxicity of iron and mutant A53T α-synuclein: implications for neuronal cell death in Parkinson disease. J Biol Chem 286:33380–33389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hagemeier J, Geurts JJ, Zivadinov R (2012) Brain iron accumulation in aging and neurodegenerative disorders. Expert Rev Neurother 12:1467–1480

    Article  CAS  PubMed  Google Scholar 

  45. Focht SJ, Snyder BS, Beard JL, Van Gelder W, Williams LR, Connor JR (1997) Regional distribution of iron, transferrin, ferritin, and oxidatively-modified proteins in young and aged Fischer 344 rat brains. Neuroscience 79:255–261

    Article  CAS  PubMed  Google Scholar 

  46. Dornelles AS, Garcia VA, de Lima MN, Vedana G, Alcalde LA, Bogo MR, Schröder N (2010) mRNA expression of proteins involved in iron homeostasis in brain regions is altered by age and by iron overloading in the neonatal period. Neurochem Res 35:564–571

    Article  CAS  PubMed  Google Scholar 

  47. Thulluri S, Wu M, Blough ER, Manne ND, Litchfield AB, Wang B (2012) Regulation of iron-related molecules in the rat hippocampus: sex- and age-associated differences. Ann Clin Lab Sci 42:145–151

    CAS  PubMed  Google Scholar 

  48. Clardy SL, Wang X, Boyer PJ, Earley CJ, Allen RP, Connor JR (2006) Is ferroportin-hepcidin signaling altered in restless legs syndrome? J Neurol Sci 247:173–179

    Article  CAS  PubMed  Google Scholar 

  49. Zechel S, Huber-Wittmer K, von Bohlen und Halbach O (2006) Distribution of the iron-regulating protein hepcidin in the murine central nervous system. J Neurol Res 84:790–800

    Article  CAS  Google Scholar 

  50. Wang Q, Du F, Qian ZM, Ge XH, Zhu L, Yung WH, Yang L, Ke Y (2008) Lipopolysaccharide induces a significant increase in expression of iron regulatory hormone hepcidin in the cortex and substantia nigra in rat brain. Endocrinology 149:3920–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qian ZM, He X, Liang T, Wu KC, Yan YC, Lu LN, Yang G, Luo QQ, Yung WH, Ke Y (2014) Lipopolysaccharides upregulate hepcidin in neuron via microglia and the IL-6/STAT3 signaling pathway. Mol Neurobiol 50(3):811–820

    Article  CAS  PubMed  Google Scholar 

  52. Wang SM, Fu LJ, Duan XL, Crooks DR, Yu P, Qian ZM, Di XJ, Li J, Rouault TA, Chang YZ (2010) Role of hepcidin in murine brain iron metabolism. Cell Mol Life Sci 67:123–133

    Article  CAS  PubMed  Google Scholar 

  53. Du F, Qian C, Qian ZM, Wu XM, Xie H, Yung WH, Ke Y (2011) Hepcidin directly inhibits transferrin receptor 1 expression in astrocytes via a cyclic AMP-protein kinase A pathway. Glia 59:936–945

    Article  PubMed  Google Scholar 

  54. Nemeth E, Ganz T (2006) Regulation of iron metabolism by hepcidin. Annu Rev Nutr 26:323–342

    Article  CAS  PubMed  Google Scholar 

  55. Martin WR, Ye FQ, Allen PS (1998) Increasing striatal iron content associated with normal aging. Mov Disord 13:281–286

    Article  CAS  PubMed  Google Scholar 

  56. Cass WA, Grondin R, Andersen AH, Zhang Z, Hardy PA, Hussey-Andersen LK, Rayens WS, Gerhardt GA, Gash DM (2007) Iron accumulation in the striatum predicts aging-related decline in motor function in rhesus monkeys. Neurobiol Aging 28:258–271

    Article  CAS  PubMed  Google Scholar 

  57. Raz N, Kennedy KM (2009) A systems approach to the aging brain: neuroanatomic changes, their modifiers, and cognitive correlates. In: Jagust, W., D’Esposito, M. (Eds.), Imaging the aging brain. Oxford University Press, pp. 43–70.

  58. De Domenico I, Zhang TY, Koening CL, Branch RW, London N, Lo E, Daynes RA, Kushner JP, Li D, Ward DM, Kaplan J (2010) Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J Clin Invest 120:2395–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ganz T (2011) Hepcidin and iron regulation, 10 years later. Blood 117:4425–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cevenini E, Monti D, Franceschi C (2013) Inflamm-ageing. Curr Opin Clin Nutr Metab Care 16:14–20

    Article  CAS  PubMed  Google Scholar 

  61. Myhre O, Utkilen H, Duale N, Brunborg G, Hofer T (2013) Metal dyshomeostasis and inflammation in Alzheimer’s and Parkinson’s diseases: possible impact of environmental exposures. Oxidative Med Cell Longev 2013:726954

    Article  Google Scholar 

  62. Sadrzadeh SM, Saffari Y (2004) Iron and brain disorders. Am J Clin Pathol 121(Suppl):S64–S70

    PubMed  Google Scholar 

  63. Chu Y, Kordower JH (2007) Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson’s disease? Neurobiol Dis 25:134–149

    Article  CAS  PubMed  Google Scholar 

  64. Wu M, Katta A, Gadde MK, Liu H, Kakarla SK, Fannin J, Paturi S, Arvapalli RK, Rice KM, Wang Y, Blough ER (2009) Aging associated dysfunction of Akt/protein kinase B: S-nitrosylation and acetaminophen intervention. PLoS One 4:e6430

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wu M, Fannin J, Rice KM, Wang B, Blough ER (2011) Effect of aging on cellular mechanotransduction. Ageing Res Rev 10:1–15

    Article  PubMed  Google Scholar 

  66. García-Matas S, de Vera N, Aznar AO, Marimon JM, Adell A, Planas AM, Cristòfol R, Sanfeliu C (2010) In vitro and in vivo activation of astrocytes by amyloid-beta is potentiated by pro-oxidant agents. J Alzheimers Dis 20:229–245

    Article  PubMed  Google Scholar 

  67. Gutteridge JM (1983) Antioxidant properties of caeruloplasmin towards iron- and copper-dependent oxygen radical formation. FEBS Lett 157:37–40

    Article  CAS  PubMed  Google Scholar 

  68. Miyajima H, Takahashi Y, Serizawa M, Kaneko E, Gitlin JD (1996) Increased plasma lipid peroxidation in patients with aceruloplasminemia. Free Rad Biol Med 20:757–760

    Article  CAS  PubMed  Google Scholar 

  69. Qian ZM, Shen X (2001) Brain iron transport and neurodegeneration. Trends Mol Med 7:103–108

    Article  CAS  PubMed  Google Scholar 

  70. Jellinger KA (2004) Lewy body-related alpha-synucleinopathy in the aged human brain. J Neural Transm 111:1219–3125

    Article  CAS  PubMed  Google Scholar 

  71. Li W, Lesuisse C, Xu Y, Troncoso JC, Price DL, Lee MK (2004) Stabilization of alpha-synuclein protein with aging and familial Parkinson’s disease-linked A53T mutation. J Neurosci 24:7400–7409

    Article  CAS  PubMed  Google Scholar 

  72. Mosconi L, Glodzik L, Mistur R, McHugh P, Rich KE, Javier E, Williams S, Pirraglia E, De Santi S, Mehta PD, Zinkowski R, Blennow K, Pratico D, de Leon MJ (2010) Oxidative stress and amyloid-beta pathology in normal individuals with a maternal history of Alzheimer’s. Biol Psychiat 68:913–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Montine TJ, Peskind ER, Quinn JF, Wilson AM, Montine KS, Galasko D (2011) Increased cerebrospinal fluid F2-isoprostanes are associated with aging and latent Alzheimer’s disease as identified by biomarkers. Neruomol Med 13:37–43

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The studies in our laboratories were supported by the Competitive Earmarked Grants of The Hong Kong Research Grants Council (GRF14106914, GRF14111815), Hong Kong Health and Medical Research Fund (01120146), and the National Natural Science Foundation of China (NSFC) (31330035, 31271132, 31371092, 31571195).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-Ming Qian or Ya Ke.

Ethics declarations

Author Contributions

Y.K. and Z.M.Q. conceived, organized, and supervised the study; L.N.L. performed the experiments and K.C.W. helped on iron measurement; Y.K. and W.H.Y. contributed to the analysis and interpretation of data; Y.K. and Z.M.Q. prepared and wrote the manuscript.

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, LN., Qian, ZM., Wu, KC. et al. Expression of Iron Transporters and Pathological Hallmarks of Parkinson’s and Alzheimer’s Diseases in the Brain of Young, Adult, and Aged Rats. Mol Neurobiol 54, 5213–5224 (2017). https://doi.org/10.1007/s12035-016-0067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0067-0

Keywords

Navigation