Skip to main content

Advertisement

Log in

The Promoter and Multiple Enhancers of the pou4f3 Gene Regulate Expression in Inner Ear Hair Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Few enhancers that target gene expression to inner ear hair cells (HCs) have been identified. Using transgenic analysis of enhanced green fluorescent protein (eGFP) reporter constructs and bioinformatics, we evaluated the control of pou4f3 gene expression, since it is expressed only in HCs within the inner ear and continues to be expressed throughout life. An 8.5-kb genomic DNA fragment 5′ to the start codon, containing three regions of high cross-species homology, drove expression in all embryonic and neonatal HCs, and adult vestibular and inner HCs, but not adult outer HCs. Transgenes with 0.4, 0.8, 2.5, or 6.5 kb of 5′ DNA did not produce HC expression. However, addition of the region from 6.5 to 7.2 kb produced expression in vestibular HCs and neonatal basal turn outer HCs, which also implicated the region from 7.2 to 8.5 kb in inner and apical outer HC expression. Deletion of the region from 0.4 to 5.5 kb 5′ from the 8.5-kb construct did not affect HC expression, further indicating lack of HC regulatory elements. When the region from 1 to 0.4 kb was replaced with the minimal promoter of the Ela1 gene, HC expression was maintained but at a drastically reduced level. Bioinformatics identified regions of highly conserved sequence outside of the 8.5 kb, which contained POU4F3-, GFI1-, and LHX3-binding sites. These regions may be involved in maintaining POU4F3 expression in adult outer HCs. Our results identify separate enhancers at various locations that direct expression to different HC types at different ages and determine that 0.4 kb of upstream sequence determines expression level. These data will assist in the identification of mutations in noncoding, regulatory regions of this deafness gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jahan I, Pan N, Kersigo J, Fritzsch B (2013) Beyond generalized hair cells: molecular cues for hair cell types. Hear Res 297:30–41

    Article  CAS  PubMed  Google Scholar 

  2. Su YX, Hou CC, Yang WX (2015) Control of hair cell development by molecular pathways involving Atoh 1, Hes1 and Hes5. Gene 558:6–24

    Article  CAS  PubMed  Google Scholar 

  3. McClure CD, Southall TD (2015) Getting down to specifics: profiling gene expression and protein-DNA interactions in a cell type-specific manner. Adv Genet 91:103–151

    PubMed  PubMed Central  Google Scholar 

  4. Gray S, Levine M (1996) Transcriptional repression in development. Curr Opin Cell Biol 8:358–364

    Article  CAS  PubMed  Google Scholar 

  5. Spitz F, Furlong EE (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13:613–626

    Article  CAS  PubMed  Google Scholar 

  6. Palstra RJ, Grosveld F (2012) Transcription factor binding at enhancers: shaping a genomic regulatory landscape in flux. Front Genet 3:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hallikas O, Palin K, Sinjushina N, Rautiainen R, Partanen J, Ukkonen E, Taipale J (2006) Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell 124:47–59

    Article  CAS  PubMed  Google Scholar 

  8. Ma Q (2006) Transcriptional regulation of neuronal phenotype in mammals. J Physiol 575:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Butler JE, Kadonaga JT (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev 16:2583–2592

    Article  CAS  PubMed  Google Scholar 

  10. Ornitz DM, Hammer RE, Davison BL, Brinster RL, Palmiter RD (1987) Promoter and enhancer elements from the rat elastase I gene function independently of each other and of heterologous enhancers. Mol Cell Biol 7:3466–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hammer RE, Swift GH, Ornitz DM, Quaife CJ, Palmiter RD, Brinster RL, MacDonald RJ (1987) The rat elastase I regulatory element is an enhancer that directs correct cell specificity and developmental onset of expression in transgenic mice. Mol Cell Biol 7:2956–2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kleinjan DA, van Heyningen V (2005) Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76:8–32

    Article  CAS  PubMed  Google Scholar 

  13. Schultz JM, Khan SN, Ahmed ZM, Riazuddin S, Waryah AM, Chhatre D, Starost MF, Ploplis B, et al. (2009) Noncoding mutations of HGF are associated with nonsyndromic hearing loss, DFNB39. Am J Hum Genet 85:25–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scacheri CA, Scacheri PC (2015) Mutations in the noncoding genome. Curr Opin Pediatr 27:659–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gubbels SP, Woessner DW, Mitchell JC, Ricci AJ, Brigande JV (2008) Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 455:537–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Izumikawa M, Batts SA, Miyazawa T, Swiderski DL, Raphael Y (2008) Response of the flat cochlear epithelium to forced expression of Atoh 1. Hear Res 240:52–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF, Brough DE, Raphael Y (2005) Auditory hair cell replacement and hearing improvement by Atoh 1 gene therapy in deaf mammals. Nat Med 11:271–276

    Article  CAS  PubMed  Google Scholar 

  18. Zheng JL, Gao WQ (2000) Overexpression of Math 1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 3:580–586

    Article  CAS  PubMed  Google Scholar 

  19. Gazit R, Krizhanovsky V, Ben-Arie N (2004) Math 1 controls cerebellar granule cell differentiation by regulating multiple components of the Notch signaling pathway. Development 131:903–913

    Article  CAS  PubMed  Google Scholar 

  20. Leonard JH, Cook AL, Van Gele M, Boyle GM, Inglis KJ, Speleman F, Sturm RA (2002) Proneural and proneuroendocrine transcription factor expression in cutaneous mechanoreceptor (Merkel) cells and Merkel cell carcinoma. Int J Cancer 101:103–110

    Article  CAS  PubMed  Google Scholar 

  21. Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY (2001) Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294:2155–2158

    Article  CAS  PubMed  Google Scholar 

  22. Helms AW, Abney AL, Ben-Arie N, Zoghbi HY, Johnson JE (2000) Autoregulation and multiple enhancers control Math1 expression in the developing nervous system. Development 127:1185–1196

    CAS  PubMed  Google Scholar 

  23. Boeda B, Weil D, Petit C (2001) A specific promoter of the sensory cells of the inner ear defined by transgenesis. Hum Mol Genet 10:1581–1589

    Article  CAS  PubMed  Google Scholar 

  24. Masuda M, Dulon D, Pak K, Mullen LM, Li Y, Erkman L, Ryan AF (2011) Regulation of POU4F3 gene expression in hair cells by 5′ DNA in mice. Neuroscience 197:48–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Z, Fang J, Dearman J, Zhang L, Zuo J (2014) In vivo generation of immature inner hair cells in neonatal mouse cochleae by ectopic Atoh1 expression. PLoS One 9:e89377

    Article  PubMed  PubMed Central  Google Scholar 

  26. Erkman L, McEvilly RJ, Luo L, Ryan AK, Hooshmand F, O’Connell SM, Keithley EM, Rapaport DH, et al. (1996) Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381:603–606

    Article  CAS  PubMed  Google Scholar 

  27. Xiang M, Gao WQ, Hasson T, Shin JJ (1998) Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells. Development 125:3935–3946

    CAS  PubMed  Google Scholar 

  28. Masuda M, Pak K, Chavez E, Ryan AF (2012) TFE2 and GATA3 enhance induction of POU4F3 and myosin VIIa positive cells in nonsensory cochlear epithelium by ATOH1. Dev Biol 372:68–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ikeda R, Pak K, Chavez E, Ryan AF (2015) Transcription factors with conserved binding sites near ATOH1 on the pou4f3 gene enhance the induction of cochlear hair cells. Mol Neurobiol J 51:672–684

    Article  CAS  Google Scholar 

  30. Swift GH, Liu Y, Rose SD, Bischof LJ, Steelman S, Buchberg AM, Wright CV, MacDonald RJ (1998) An endocrine-exocrine switch in the activity of the pancreatic homeodomain protein PDX1 through formation of a trimeric complex with PBX1b and MRG1 (MEIS2). Mol Cell Biol 18:5109–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ittner LM, Gotz J (2007) Pronuclear injection for the production of transgenic mice. Nat Protoc 2:1206–1215

    Article  CAS  PubMed  Google Scholar 

  32. Demuth JP, De Bie T, Stajich JE, Cristianini N, Hahn MW (2006) The evolution of mammalian gene families. PLoS One 1:e85

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hertzano R, Dror AA, Montcouquiol M, Ahmed ZM, Ellsworth B, Camper S, Friedman TB, Kelley MW, Avraham KB (2007) Lhx3, a LIM domain transcription factor, is regulated by Pou4f3 in the auditory but not in the vestibular system. Eur J Neurosci 25:999–1005

    Article  PubMed  Google Scholar 

  34. Hertzano R, Montcouquiol M, Rashi-Elkeles S, Elkon R, Yucel R, Frankel WN, Rechavi G, Moroy T, et al. (2004) Transcription profiling of inner ears from Pou4f3(ddl/ddl) identifies Gfi1 as a target of the pou4f3 deafness gene. Hum Mol Genet 13:2143–2153

    Article  CAS  PubMed  Google Scholar 

  35. Ryan AF, Ikeda R, Masuda M (2015) The regulation of gene expression in hair cells. Hear Res 329:33–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18:333–334

    Article  CAS  PubMed  Google Scholar 

  37. Farre D, Roset R, Huerta M, Adsuara JE, Rosello L, Alba MM, Messeguer X (2003) Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 31:3651–3653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Artinger KB, Fedtsova N, Rhee JM, Bronner-Fraser M, Turner E (1998) Placodal origin of Brn-3-expressing cranial sensory neurons. J Neurobiol 36:572–585

    Article  CAS  PubMed  Google Scholar 

  39. Xiang M, Zhou L, Macke JP, Yoshioka T, Hendry SH, Eddy RL, Shows TB, Nathans J (1995) The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci 15:4762–4785

    CAS  PubMed  Google Scholar 

  40. Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ (1999) Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 260:712–717

    Article  CAS  PubMed  Google Scholar 

  41. Vahava O, Morell R, Lynch ED, Weiss S, Kagan ME, Ahituv N, Morrow JE, Lee MK, et al. (1998) Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science 279:1950–1954

    Article  CAS  PubMed  Google Scholar 

  42. Courey AJ, Jia S (2001) Transcriptional repression: the long and the short of it. Genes Dev 15:2786–2796

    CAS  PubMed  Google Scholar 

  43. Harmston N, Lenhard B (2013) Chromatin and epigenetic features of long-range gene regulation. Nucleic Acids Res 41:7185–7199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fisher S, Grice EA, Vinton RM, Bessling SL, McCallion AS (2006) Conservation of RET regulatory function from human to zebrafish without sequence similarity. Science 312:276–279

    Article  CAS  PubMed  Google Scholar 

  45. McGaughey DM, Vinton RM, Huynh J, Al-Saif A, Beer MA, McCallion AS (2008) Metrics of sequence constraint overlook regulatory sequences in an exhaustive analysis at phox2b. Genome Res 18:252–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Birney E, Stamatoyannopoulos JA, Dutta A, et al. (2007) Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  CAS  PubMed  Google Scholar 

  47. Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A, Kutter C, Watt S, et al. (2010) Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328:1036–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A, Waszak SM, Habegger L, Rozowsky J, et al. (2010) Variation in transcription factor binding among humans. Science 328:232–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dingar D, Kalkat M, Chan PK, Srikumar T, Bailey SD, Tu WB, Coyaud E, Ponzielli R, et al. (2014) BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors. J Proteome 118:95–111

    Article  Google Scholar 

  50. Malynn BA, de Alboran IM, O’Hagan RC, Bronson R, Davidson L, DePinho RA, Alt FW (2000) N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev 14:1390–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kopecky B, Santi P, Johnson S, Schmitz H, Fritzsch B (2011) Conditional deletion of N-Myc disrupts neurosensory and non-sensory development of the ear. Dev Dyn 240:1373–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Krizhanovsky V, Soreq L, Kliminski V, Ben-Arie N (2006) Math1 target genes are enriched with evolutionarily conserved clustered E-box binding sites. J Mol Neurosci 28:211–229

    Article  CAS  PubMed  Google Scholar 

  53. Zheng JL, Shou J, Guillemot F, Kageyama R, Gao WQ (2000) Hes1 is a negative regulator of inner ear hair cell differentiation. Development 127:4551–4560

    CAS  PubMed  Google Scholar 

  54. Lee AM, Wu CT (2006) Enhancer-promoter communication at the yellow gene of Drosophila melanogaster: diverse promoters participate in and regulate trans interactions. Genetics 174:1867–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339:957–959. doi:10.1126/science.1229259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Montavon T, Soshnikova N, Mascrez B, Joye E, Thevenet L, Splinter E, de Laat W, Spitz F, et al. (2011) A regulatory archipelago controls Hox genes transcription in digits. Cell 147:1132–1145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by grants from the National Institutes of Health/National Institute on Deafness and other Communication Disorders (DC000139) and the Veterans Administration merit grant (BX001205) and the National Organization for Hearing Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen F Ryan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masuda, M., Li, Y., Pak, K. et al. The Promoter and Multiple Enhancers of the pou4f3 Gene Regulate Expression in Inner Ear Hair Cells. Mol Neurobiol 54, 5414–5426 (2017). https://doi.org/10.1007/s12035-016-0060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0060-7

Keywords

Navigation