Skip to main content
Log in

SYD-1 Promotes Multiple Developmental Steps Leading to Neuronal Connectivity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The establishment of neuronal connectivity requires precise orchestration of multiple developmental steps, including axon specification, axon guidance, selection of synaptic target sites, and development of synaptic specializations. Although these are separate developmental steps, evidence indicates that some of the signaling molecules that regulate these steps are shared. In this review, we focus on SYD-1, a RhoGAP-like protein that has been implicated in each step of axonal development. We discuss interactions between SYD-1, UNC-40(DCC) and RhoGTPases and highlight both similarities and differences in how SYD-1 functions to regulate the different steps of axonal development. These observations reveal an example of how a signaling protein can be repurposed across sequential developmental steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Engle EC (2010) Human genetic disorders of axon guidance. Cold Spring Harb Perspect Biol 2(3):a001784. doi:10.1101/cshperspect.a001784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fatemi SH, Folsom TD (2009) The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophrenia bulletin 35(3):528–548. doi:10.1093/schbul/sbn187

    Article  PubMed  PubMed Central  Google Scholar 

  3. McFadden K, Minshew NJ (2013) Evidence for dysregulation of axonal growth and guidance in the etiology of ASD. Front Hum nNeurosci 7:671. doi:10.3389/fnhum.2013.00671

    Google Scholar 

  4. Hallam SJ, Goncharov A, McEwen J, Baran R, Jin Y (2002) SYD-1, a presynaptic protein with PDZ, C2 and rhoGAP-like domains, specifies axon identity in C. elegans. Nat Neurosci 5(11):1137–1146. doi:10.1038/nn959nn959

    Article  CAS  PubMed  Google Scholar 

  5. Patel MR, Lehrman EK, Poon VY, Crump JG, Zhen M, Bargmann CI, Shen K (2006) Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat Neurosci 9(12):1488–1498. doi:10.1038/nn1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holbrook S, Finley JK, Lyons EL, Herman TG (2012) Loss of syd-1 from R7 neurons disrupts two distinct phases of presynaptic development. J Neurosci 32(50):18101–18111. doi:10.1523/JNEUROSCI.1350-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wentzel C, Sommer JE, Nair R, Stiefvater A, Sibarita JB, Scheiffele P (2013) mSYD1A, a mammalian synapse-defective-1 protein, regulates synaptogenic signaling and vesicle docking. Neuron 78(6):1012–1023. doi:10.1016/j.neuron.2013.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu Y, Taru H, Jin Y, Quinn CC (2015) SYD-1C, UNC-40 (DCC) and SAX-3 (Robo) function interdependently to promote axon guidance by regulating the MIG-2 GTPase. PLoS Genet 11(4):e1005185. doi:10.1371/journal.pgen.1005185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tahirovic S, Bradke F (2009) Neuronal polarity. Cold Spring Harb Perspect Biol 1(3):a001644. doi:10.1101/cshperspect.a001644

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bai G, Chivatakarn O, Bonanomi D, Lettieri K, Franco L, Xia C, Stein E, Ma L et al (2011) Presenilin-dependent receptor processing is required for axon guidance. Cell 144(1):106–118. doi:10.1016/j.cell.2010.11.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fothergill T, Donahoo AL, Douglass A, Zalucki O, Yuan J, Shu T, Goodhill GJ, Richards LJ (2013) Netrin-DCC signaling regulates corpus callosum formation through attraction of pioneering axons and by modulating Slit2-mediated repulsion. Cereb Cortex 24(5):1138–1151. doi:10.1093/cercor/bhs395

    Article  PubMed  Google Scholar 

  12. Fujisawa K, Wrana JL, Culotti JG (2007) The slit receptor EVA-1 coactivates a SAX-3/Robo mediated guidance signal in C. elegans. Science 317(5846):1934–1938. doi:10.1126/science.1144874

    Article  CAS  PubMed  Google Scholar 

  13. Stein E, Tessier-Lavigne M (2001) Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291(5510):1928–1938. doi:10.1126/science.1058445

    Article  CAS  PubMed  Google Scholar 

  14. Yu TW, Hao JC, Lim W, Tessier-Lavigne M, Bargmann CI (2002) Shared receptors in axon guidance: SAX-3/Robo signals via UNC-34/Enabled and a Netrin-independent UNC-40/DCC function. Nat Neurosci 5(11):1147–1154. doi:10.1038/nn956

    Article  CAS  PubMed  Google Scholar 

  15. Norris AD, Dyer JO, Lundquist EA (2009) The Arp2/3 complex, UNC-115/abLIM, and UNC-34/Enabled regulate axon guidance and growth cone filopodia formation in Caenorhabditis elegans. Neural Dev 4:38, doi:1749-8104-4-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rittinger K, Taylor WR, Smerdon SJ, Gamblin SJ (1998) Support for shared ancestry of GAPs. Nature 392(6675):448–449. doi:10.1038/33043

    Article  CAS  PubMed  Google Scholar 

  17. Rittinger K, Walker PA, Eccleston JF, Nurmahomed K, Owen D, Laue E, Gamblin SJ, Smerdon SJ (1997) Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature 388(6643):693–697. doi:10.1038/41805

    Article  CAS  PubMed  Google Scholar 

  18. Ting CY, Yonekura S, Chung P, Hsu SN, Robertson HM, Chiba A, Lee CH (2005) Drosophila N-cadherin functions in the first stage of the two-stage layer-selection process of R7 photoreceptor afferents. Development 132(5):953–963. doi:10.1242/dev.01661

    Article  CAS  PubMed  Google Scholar 

  19. Hing H, Xiao J, Harden N, Lim L, Zipursky SL (1999) Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila. Cell 97(7):853–863

    Article  CAS  PubMed  Google Scholar 

  20. Newsome TP, Asling B, Dickson BJ (2000) Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127(4):851–860

    CAS  PubMed  Google Scholar 

  21. Newsome TP, Schmidt S, Dietzl G, Keleman K, Asling B, Debant A, Dickson BJ (2000) Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Cell 101(3):283–294

    Article  CAS  PubMed  Google Scholar 

  22. Chia PH, Chen B, Li P, Rosen MK, Shen K (2013) Local F-actin network links synapse formation and axon branching. Cell 156(1-2):208–220. doi:10.1016/j.cell.2013.12.009

    Article  CAS  Google Scholar 

  23. Shen K, Fetter RD, Bargmann CI (2004) Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 116(6):869–881

    Article  CAS  PubMed  Google Scholar 

  24. Chia PH, Patel MR, Shen K (2012) NAB-1 instructs synapse assembly by linking adhesion molecules and F-actin to active zone proteins. Nat Neurosci 15(2):234–242. doi:10.1038/nn.2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dai Y, Taru H, Deken SL, Grill B, Ackley B, Nonet ML, Jin Y (2006) SYD-2 Liprin-alpha organizes presynaptic active zone formation through ELKS. Nat Neurosci 9(12):1479–1487. doi:10.1038/nn1808

    Article  CAS  PubMed  Google Scholar 

  26. Colon-Ramos DA, Margeta MA, Shen K (2007) Glia promote local synaptogenesis through UNC-6 (netrin) signaling in C. elegans. Science 318(5847):103–106. doi:10.1126/science.1143762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stavoe AK, Colon-Ramos DA (2012) Netrin instructs synaptic vesicle clustering through Rac GTPase, MIG-10, and the actin cytoskeleton. J Cell Biol 197(1):75–88. doi:10.1083/jcb.201110127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Adler CE, Fetter RD, Bargmann CI (2006) UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation. Nat Neurosci 9(4):511–518. doi:10.1038/nn1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chang C, Adler CE, Krause M, Clark SG, Gertler FB, Tessier-Lavigne M, Bargmann CI (2006) MIG-10/lamellipodin and AGE-1/PI3K promote axon guidance and outgrowth in response to slit and netrin. Curr Biol 16(9):854–862. doi:10.1016/j.cub.2006.03.083

    Article  CAS  PubMed  Google Scholar 

  30. Law AL, Vehlow A, Kotini M, Dodgson L, Soong D, Theveneau E, Bodo C, Taylor E et al (2013) Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo. J Cell Biol 203(4):673–689. doi:10.1083/jcb.201304051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Quinn CC, Pfeil DS, Chen E, Stovall EL, Harden MV, Gavin MK, Forrester WC, Ryder EF et al (2006) UNC-6/netrin and SLT-1/slit guidance cues orient axon outgrowth mediated by MIG-10/RIAM/lamellipodin. Curr Biol 16(9):845–853. doi:10.1016/j.cub.2006.03.025

    Article  CAS  PubMed  Google Scholar 

  32. Quinn CC, Pfeil DS, Wadsworth WG (2008) CED-10/Rac1 mediates axon guidance by regulating the asymmetric distribution of MIG-10/lamellipodin. Curr Biol 18(11):808–813. doi:10.1016/j.cub.2008.04.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Quinn CC, Wadsworth WG (2008) Axon guidance: asymmetric signaling orients polarized outgrowth. Trends Cell Biol 18(12):597–603. doi:10.1016/j.tcb.2008.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu Y, Quinn CC (2012) MIG-10 functions with ABI-1 to mediate the UNC-6 and SLT-1 axon guidance signaling pathways. PLoS Genet 8(11):e1003054. doi:10.1371/journal.pgen

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Owald D, Fouquet W, Schmidt M, Wichmann C, Mertel S, Depner H, Christiansen F, Zube C et al (2010) A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila. J Cell Biol 188(4):565–579. doi:10.1083/jcb.200908055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Owald D, Khorramshahi O, Gupta VK, Banovic D, Depner H, Fouquet W, Wichmann C, Mertel S et al (2012) Cooperation of Syd-1 with Neurexin synchronizes pre- with postsynaptic assembly. Nat Neurosci 15(9):1219–1226. doi:10.1038/nn.3183

    Article  CAS  PubMed  Google Scholar 

  37. Hu H, Li M, Labrador JP, McEwen J, Lai EC, Goodman CS, Bashaw GJ (2005) Cross GTPase-activating protein (CrossGAP)/Vilse links the Roundabout receptor to Rac to regulate midline repulsion. Proc Natl Acad Sci U S A 102(12):4613–4618. doi:10.1073/pnas.0409325102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lundstrom A, Gallio M, Englund C, Steneberg P, Hemphala J, Aspenstrom P, Keleman K, Falileeva L et al (2004) Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons. Genes Dev 18(17):2161–2171. doi:10.1101/gad.31020418/17/2161

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H, Tang H, Wen L et al (2001) Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 107(2):209–221

    Article  CAS  PubMed  Google Scholar 

  40. Yamazaki D, Itoh T, Miki H, Takenawa T (2013) srGAP1 regulates lamellipodial dynamics and cell migratory behavior by modulating Rac1 activity. Mol Biol Cell 24(21):3393–3405. doi:10.1091/mbc.E13-04-0178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gallo G (2010) The cytoskeletal and signaling mechanisms of axon collateral branching. Dev Neurobiol 71(3):201–220. doi:10.1002/dneu.20852

    Article  Google Scholar 

  42. Lin CH, Forscher P (1993) Cytoskeletal remodeling during growth cone-target interactions. J Cell Biol 121(6):1369–1383

    Article  CAS  PubMed  Google Scholar 

  43. O'Connor TP, Bentley D (1993) Accumulation of actin in subsets of pioneer growth cone filopodia in response to neural and epithelial guidance cues in situ. J Cell Biol 123(4):935–948

    Article  PubMed  Google Scholar 

  44. Pak CW, Flynn KC, Bamburg JR (2008) Actin-binding proteins take the reins in growth cones. Nat Rev Neurosci 9(2):136–147. doi:10.1038/nrn2236

    Article  CAS  PubMed  Google Scholar 

  45. Sabry JH, O'Connor TP, Evans L, Toroian-Raymond A, Kirschner M, Bentley D (1991) Microtubule behavior during guidance of pioneer neuron growth cones in situ. J Cell Biol 115(2):381–395

    Article  CAS  PubMed  Google Scholar 

  46. Zhou FQ, Cohan CS (2004) How actin filaments and microtubules steer growth cones to their targets. J Neurobiol 58(1):84–91. doi:10.1002/neu.10278

    Article  CAS  PubMed  Google Scholar 

  47. Nelson JC, Stavoe AK, Colon-Ramos DA (2013) The actin cytoskeleton in presynaptic assembly. Cell Adh Migr 7(4):379–387. doi:10.4161/cam.24803

    Article  PubMed  PubMed Central  Google Scholar 

  48. Briancon-Marjollet A, Ghogha A, Nawabi H, Triki I, Auziol C, Fromont S, Piche C, Enslen H et al (2008) Trio mediates netrin-1-induced Rac1 activation in axon outgrowth and guidance. Mol Cell Biol 28(7):2314–2323. doi:10.1128/MCB.00998-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Demarco RS, Struckhoff EC, Lundquist EA (2012) The Rac GTP exchange factor TIAM-1 acts with CDC-42 and the guidance receptor UNC-40/DCC in neuronal protrusion and axon guidance. PLoS Genet 8(4):e1002665. doi:10.1371/journal.pgen

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gitai Z, Yu TW, Lundquist EA, Tessier-Lavigne M, Bargmann CI (2003) The netrin receptor UNC-40/DCC stimulates axon attraction and outgrowth through enabled and, in parallel, Rac and UNC-115/AbLIM. Neuron 37(1):53–65

    Article  CAS  PubMed  Google Scholar 

  51. Stavoe AKH, Nelson JC, Martínez-Velázquez LA, Klein M, Samuel ADT, Colón-Ramos DA (2012) Synaptic vesicle clustering requires a distinct MIG-10/Lamellipodin isoform and ABI-1 downstream from Netrin. Genes Dev 26(19):2206–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Z, Linden LM, Naegeli KM, Ziel JW, Chi Q, Hagedorn EJ, Savage NS, Sherwood DR (2014) UNC-6 (netrin) stabilizes oscillatory clustering of the UNC-40 (DCC) receptor to orient polarity. J Cell Biol 206(5):619–633. doi:10.1083/jcb.201405026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work on SYD-1 in axon guidance has been supported by the following grants to CCQ: NIH R03NS091983, NIH R03NS081361, and a Shaw Scientist Award from the Greater Milwaukee Foundation. YX has been supported by a Research Foundation Fellowship and a Research Growth Initiative grant #101X263 from the University of Wisconsin-Milwaukee to CCQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Quinn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Quinn, C.C. SYD-1 Promotes Multiple Developmental Steps Leading to Neuronal Connectivity. Mol Neurobiol 53, 6768–6773 (2016). https://doi.org/10.1007/s12035-015-9592-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9592-5

Keywords

Navigation