Skip to main content
Log in

The Severity of Gliosis in Hippocampal Sclerosis Correlates with Pre-Operative Seizure Burden and Outcome After Temporal Lobectomy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Astrogliosis and microgliosis in hippocampal sclerosis (HS) are widespread and are postulated to contribute to the pro-excitatory neuropathological environment. This study aimed to establish if seizure burden at the time of surgery or post-surgical outcome were correlated with the extent of gliosis in HS. As a secondary aim, we wanted to determine if the degree of gliosis could be predicted by pre-operative neuroimaging.

Children and adults who underwent epilepsy surgery for HS between 2002 and 2011 were recruited (n = 43), and age-matched autopsy controls obtained (n = 15). Temporal lobe specimens were examined by DAB immunohistochemistry for astrocytes (glial fibrillary acidic protein (GFAP)) and microglia (CD68). Cell counting for GFAP and CD68 was performed and quantitative densitometry undertaken for GFAP. Seizure variables and outcome (Engel) were determined through medical record and patient review. Seizure frequency in the 6 months prior to surgery was measured to reflect the acute seizure burden. Duration of seizures, age at onset and age at operation were regarded to reflect chronic seizure burden. Focal, lobar and generalized atrophy on pre-operative MRI were independently correlated with the degree of cortical gliosis in the surgical specimen.

In HS, both acute and chronic seizure burden were positively correlated with the degree of gliosis. An increase in reactive astrocyte number in CA3 was the strongest predictor of poor post-operative seizure outcome at 1 and 3 years post-operatively in this cohort. Changes in lower cortical astrocyte and upper cortical microglial number also correlated with post-operative outcome at 1 year. Post-surgical seizure outcome (1, 3 and 5 years) did not otherwise correlate with GFAP immunoreactivity (GFAP-IR) or CD68 immunoreactivity (CD68-IR). Increased microglial activation was detected in patients with pre-operative bilateral convulsive seizures, compared to those without convulsive seizures. Furthermore, focal, lobar and generalized atrophy on pre-operative neuroimaging were independently correlated with the degree of cortical gliosis in the surgical specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The larger cohort with TLE is reported in Johnson et al. [28].

References

  1. Thom M, Liagkouras I, Elliot KJ, Martinian L, Harkness W, McEvoy A, Caboclo LO, Sisodiya SM (2010) Reliability of patterns of hippocampal sclerosis as predictors of postsurgical outcome. Epilepsia 51:1801–1808

    Article  PubMed  Google Scholar 

  2. Hamiwka L, Jayakar P, Resnick T, Morrison G, Ragheb J, Dean P, Dunoyer C, Duchowny M (2005) Surgery for epilepsy due to cortical malformations: ten-year follow-up. Epilepsia 46:556–560

    Article  PubMed  Google Scholar 

  3. Krsek P, Maton B, Jayakar P, Dean P, Korman B, Rey G, Dunoyer C, Pacheco-Jacome E, Morrison G, Ragheb J, Vinters HV, Resnick T, Duchowny M (2009) Incomplete resection of focal cortical dysplasia is the main predictor of poor postsurgical outcome. Neurology 72:217–223

    Article  CAS  PubMed  Google Scholar 

  4. Lerner JT, Salamon N, Hauptman JS, Velasco TR, Hemb M, Wu JY, Sankar R, Donald Shields W, Engel J, Fried I, Cepeda C, Andre VM, Levine MS, Miyata H, Yong WH, Vinters HV, Mathern GW (2009) Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: a critical review and the UCLA experience. Epilepsia 50:1310–1335

    Article  PubMed  Google Scholar 

  5. Park C-K, Kim S-K, Wang K-C, Hwang Y-S, Kim KJ, Chae JH, Chi JG, Choe G-Y, Kim NR, Cho BK (2006) Surgical outcome and prognostic factors of pediatric epilepsy caused by cortical dysplasia. Childs Nerv Syst 22:586–592

    Article  PubMed  Google Scholar 

  6. Penfield W, Humphreys S (1940) Epileptogenic lesions of the brain: a histologic study. Arch Neurol Psychiatry 43:240–261

    Article  Google Scholar 

  7. Blanc F, Martinian L, Liagkouras I, Catarino C, Sisodiya SM, Thom M (2011) Investigation of widespread neocortical pathology associated with hippocampal sclerosis in epilepsy: a postmortem study. Epilepsia 52:10–21

    Article  PubMed  Google Scholar 

  8. Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, Bernasconi N, Bien CG, Cendes F, Coras R, Cross JH, Jacques TS, Kahane P, Mathern GW, Miyata H, Moshé SL, Oz B, Ozkara C, Perucca E, Sisodiya S, Wiebe S, Spreafico R (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 54:1315–1329

    Article  PubMed  Google Scholar 

  9. Keller SS, Roberts N (2008) Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia 49:741–757

    Article  PubMed  Google Scholar 

  10. Alhusaini S, Doherty CP, Scanlon C, Ronan L, Maguire S, Borgulya G, Brennan P, Delanty N, Fitzsimons M, Cavalleri GL (2012) A cross-sectional MRI study of brain regional atrophy and clinical characteristics of temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Res 99:156–166

    Article  PubMed  Google Scholar 

  11. Bernhardt BC, Worsley KJ, Kim H, Evans AC, Bernasconi A, Bernasconi N (2009) Longitudinal and cross-sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy. Neurology 72:1747–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Belluardo N, Mudo G, Jiang XH, Condorelli DF (1996) Induction of astroglial gene expression by experimental seizures in the rat: spatio-temporal patterns of the early stages. Glia 16:174–186

    Article  CAS  PubMed  Google Scholar 

  13. Borges K, Gearing M, McDermott DL, Smith AB, Almonte AG, Wainer BH, Dingledine R (2003) Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Exp Neurol 182:21–34

    Article  CAS  PubMed  Google Scholar 

  14. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184

    Article  CAS  PubMed  Google Scholar 

  15. Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A (2008) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29:142–160

    Article  CAS  PubMed  Google Scholar 

  16. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  17. Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC, Rempe D, Rodríguez JJ, Nedergaard M (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro 4 doi: 10.1042/AN20120010

  18. Belarbi K, Rosi S (2013) Modulation of adult-born neurons in the inflamed hippocampus. Front Cell Neurosci 7:145

    Article  PubMed  PubMed Central  Google Scholar 

  19. Oberheim NA, Tian GF, Han X, Peng W, Takano T, Ransom B, Nedergaard M (2008) Loss of astrocytic domain organization in the epileptic brain. J Neurosci 28:3264–3276

    Article  CAS  PubMed  Google Scholar 

  20. Sun D, Jakobs TC (2012) Structural remodeling of astrocytes in the injured CNS. Neurosci Rev 18:567–588

    Google Scholar 

  21. Das A, Wallace GC 4th, Holmes C, McDowell ML, Smith JA, Marshall JD, Bonilha L, Edwards JC, Glazier SS, Ray SK, Banik NL (2012) Hippocampal tissue of patients with refractory temporal lobe epilepsy is associated with astrocyte activation, inflammation, and altered expression of channels and receptors. Neuroscience 220:237–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK, Korsak RA, Takeda K, Akira S, Sofroniew MV (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28:7231–7243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834

    Article  CAS  PubMed  Google Scholar 

  24. Norton WT, Aquino DA, Hozumi I, Chiu FC, Brosnan CF (1992) Quantitative aspects of reactive gliosis: a review. Neurochem Res 17:877–885

    Article  CAS  PubMed  Google Scholar 

  25. Boer K, Spliet WGM, van Rijen PC, Redeker S, Troost D, Aronica E (2006) Evidence of activated microglia in focal cortical dysplasia. J Neuroimmunol 173:188–195

    Article  CAS  PubMed  Google Scholar 

  26. Cohen-Gadol AA, Pan JW, Kim JH, Spencer DD, Hetherington HH (2004) Mesial temporal lobe epilepsy: a proton magnetic resonance spectroscopy study and a histopathological analysis. J Neurosurg 101:613–620

    Article  PubMed  Google Scholar 

  27. Spencer SS, Kim J, deLanerolle N, Spencer DD (1999) Differential neuronal and glial relations with parameters of ictal discharge in mesial temporal lobe epilepsy. Epilepsia 40:708–712

    Article  CAS  PubMed  Google Scholar 

  28. Johnson AM, Sugo E, Barreto D, Cunningham AM, Hiew C-C, Lawson JA, Somerville ER, Connolly AM, Bye AME (2014) Clinicopathological associations in temporal lobe epilepsy patients utilising the current ILAE focal cortical dysplasia classification. Epilepsy Res 108:1345–51

    Article  PubMed  Google Scholar 

  29. Blümcke I, Mühlebner A (2011) Neuropathological work-up of focal cortical dysplasias using the new ILAE consensus classification system—practical guideline article invited by the Euro-CNS Research Committee. Clin Neuropathol 30:164–177

    Article  PubMed  Google Scholar 

  30. Blümcke I, Pauli E, Clusmann H, Schramm J, Becker A, Elger C, Merschhemke M, Meencke H-J, Lehmann T, von Deimling A, Scheiwe C, Zentner J, Volk B, Romstöck J, Stefan H, Hildebrandt M (2007) A new clinico-pathological classification system for mesial temporal sclerosis. Acta Neuropathol 113:235–244

    Article  PubMed  PubMed Central  Google Scholar 

  31. Blümcke I, Kistner I, Clusmann H, Schramm J, Becker AJ, Elger CE, Bien CG, Merschhemke M, Meencke H-J, Lehmann T, Buchfelder M, Weigel D, Buslei R, Stefan H, Pauli E, Hildebrandt M (2009) Towards a clinico-pathological classification of granule cell dispersion in human mesial temporal lobe epilepsies. Acta Neuropathol 117:535–544

    Article  PubMed  Google Scholar 

  32. Blümcke I, Thom M, Aronica E, Armstrong DD, Vinters HV, Palmini A, Jacques TS, Avanzini G, Barkovich AJ, Battaglia G, Becker A, Cepeda C, Cendes F, Colombo N, Crino P, Cross JH, Delalande O, Dubeau F, Duncan J, Guerrini R, Kahane P, Mathern G, Najm I, Özkara Ç, Raybaud C, Represa A, Roper SN, Salamon N, Schulze‐Bonhage A, Tassi L, Vezzani A, Spreafico R (2011) The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 52:158–174

    Article  PubMed  Google Scholar 

  33. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  34. Thom M, Blümcke I, Aronica E (2012) Long-term epilepsy-associated tumors. Brain Pathol 22:350–379

    Article  PubMed  Google Scholar 

  35. Ostergaard PJ, Jensen MB (2013) Histological quantification of astrocytosis after cerebral infarction: a systematic review. Int J Neurosci 123:439–443

    Article  PubMed  PubMed Central  Google Scholar 

  36. Garbelli R, Milesi G, Medici V, Villani F, Didato G, Deleo F, D’Incerti L, Morbin M, Mazzoleni G, Giovagnoli AR, Parente A, Zucca I, Mastropietro A, Spreafico R (2012) Blurring in patients with temporal lobe epilepsy: clinical, high-field imaging and ultrastructural study. Brain 135:2337–2349

    Article  PubMed  Google Scholar 

  37. Geurts JJG, Wolswijk G, Bö L, van der Valk P, Polman CH, Troost D, Aronica E (2003) Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain 126:1755–1766

    Article  CAS  PubMed  Google Scholar 

  38. Flügel A, Bradl M (2001) New tools to trace populations of inflammatory cells in the CNS. Glia 36: 125–136

  39. Graeber MB, Scheithauer BW, Kreutzberg GW (2002) Microglia in brain tumors. Glia 40:252–259

  40. Williams K, Alvarez X, Lackner AA (2001) Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia 36:156–164

    Article  CAS  PubMed  Google Scholar 

  41. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde BW, Engel J, French J, Glauser TA, Mathern GW, Moshé SL, Nordli D, Plouin P, Scheffer IE (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51:676–685

    Article  PubMed  Google Scholar 

  42. (1993) Guidelines for epidemiologic studies on epilepsy. Commission on Epidemiology and Prognosis, International League Against Epilepsy. Epilepsia 34: 592–596

  43. Shinnar S, Hesdorffer DC (2010) Pediatric status epilepticus: should the diagnostic evaluation change? Neurology 74:624–625

    Article  PubMed  Google Scholar 

  44. Engel J Jr (1992) Update on surgical treatment of the epilepsies. Clin Exp Neurol 29:32–48

    PubMed  Google Scholar 

  45. Andersen P (2007) The hippocampus book. Oxford University Press, New York

    Google Scholar 

  46. Jones MW, McHugh TJ (2011) Updating hippocampal representations: CA2 joins the circuit. Trends Neurosci 34:526–535

    Article  CAS  PubMed  Google Scholar 

  47. McIntosh AM, Kalnins RM, Mitchell LA, Fabinyi GCA, Briellmann RS, Berkovic SF (2004) Temporal lobectomy: long-term seizure outcome, late recurrence and risks for seizure recurrence. Brain 127:2018–2030

    Article  PubMed  Google Scholar 

  48. Spencer SS, Berg AT, Vickrey BG, Sperling MR, Bazil CW, Shinnar S, Langfitt JT, Walczak TS, Pacia SV (2005) Predicting long-term seizure outcome after respective epilepsy surgery: the multicentre study. Neurology 65:912–918

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We have received support from Leica Biosystems with immunostaining. We acknowledge the support of Westfield Research Laboratories and Professor Jenny Peat (statistician). We thank Professor Ingmar Blümcke and Dr. Roland Coras (Neuropathologishes Institut, Univeresitatskilinkum Erlangen) for kindly providing us with control tissue for the project.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra M. Johnson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, A.M., Sugo, E., Barreto, D. et al. The Severity of Gliosis in Hippocampal Sclerosis Correlates with Pre-Operative Seizure Burden and Outcome After Temporal Lobectomy. Mol Neurobiol 53, 5446–5456 (2016). https://doi.org/10.1007/s12035-015-9465-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9465-y

Keywords

Navigation