Skip to main content

Advertisement

Log in

Lesion Expansion in Experimental Demyelination Animal Models and Multiple Sclerosis Lesions

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Gray matter pathology is an important aspect of multiple sclerosis (MS) pathogenesis and disease progression. In a recent study, we were able to demonstrate that the higher myelin content in the white matter parts of the brain is an important variable in the neuroinflammatory response during demyelinating events. Whether higher white matter myelination contributes to lesion development and progression is not known. Here, we compared lesion size of intra-cortical vs. white matter MS lesions. Furthermore, dynamics of lesion development was compared in the cuprizone and lysophosphatidylcholine models. We provide clear evidence that in the human brain, white matter lesions are significantly increased in size as compared to intra-cortical gray matter lesions. In addition, studies using the cuprizone mouse model revealed that the autonomous progression of white matter lesions is more severe compared to that in the gray matter. Focal demyelination revealed that the application of equal amounts of lysophosphatidylcholine results in more severe demyelination in the white compared to the gray matter. In summary, lesion progression is most intense in myelin-rich white matter regions, irrespective of the initial lesion trigger mechanism. A better understanding of myelin debris-triggered lesion expansion will pave the way for the development of new protective strategies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kipp M, Wagenknecht N, Beyer C, Samer S, Wuerfel J, Nikoubashman O (2014) Thalamus pathology in multiple sclerosis: from biology to clinical application. Cell Mol Life Sci: CMLS

  2. Bo L, Vedeler CA, Nyland HI, Trapp BD, Mork SJ (2003) Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 62:723–732

    Article  PubMed  Google Scholar 

  3. Peterson JW, Bo L, Mork S, Chang A, Trapp BD (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400

    Article  CAS  PubMed  Google Scholar 

  4. Brownell B, Hughes JT (1962) The distribution of plaques in the cerebrum in multiple sclerosis. J Neurol Neurosurg Psychiatry 25:315–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Stefano N, Matthews PM, Filippi M, Agosta F, De Luca M, Bartolozzi ML, Guidi L, Ghezzi A et al (2003) Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology 60:1157–1162

    Article  PubMed  Google Scholar 

  6. Sailer M, Fischl B, Salat D, Tempelmann C, Schonfeld MA, Busa E, Bodammer N, Heinze HJ et al (2003) Focal thinning of the cerebral cortex in multiple sclerosis. Brain: J Neurol 126:1734–1744

    Article  Google Scholar 

  7. Chen JT, Narayanan S, Collins DL, Smith SM, Matthews PM, Arnold DL (2004) Relating neocortical pathology to disability progression in multiple sclerosis using MRI. NeuroImage 23:1168–1175

    Article  CAS  PubMed  Google Scholar 

  8. Feinstein A, Roy P, Lobaugh N, Feinstein K, O’Connor P, Black S (2004) Structural brain abnormalities in multiple sclerosis patients with major depression. Neurology 62:586–590

    Article  CAS  PubMed  Google Scholar 

  9. Amato MP, Razzolini L, Goretti B, Stromillo ML, Rossi F, Giorgio A, Hakiki B, Giannini M et al (2013) Cognitive reserve and cortical atrophy in multiple sclerosis: a longitudinal study. Neurology 80:1728–1733

    Article  PubMed  Google Scholar 

  10. Bo L, Vedeler CA, Nyland H, Trapp BD, Mork SJ (2003) Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler 9:323–331

    Article  CAS  PubMed  Google Scholar 

  11. Bo L, Geurts JJ, Mork SJ, van der Valk P (2006) Grey matter pathology in multiple sclerosis. Acta Neurol Scand Suppl 183:48–50

    Article  CAS  PubMed  Google Scholar 

  12. Seewann A, Vrenken H, Kooi EJ, van der Valk P, Knol DL, Polman CH, Pouwels PJ, Barkhof F et al (2011) Imaging the tip of the iceberg: visualization of cortical lesions in multiple sclerosis. Mult Scler 17:1202–1210

    Article  PubMed  Google Scholar 

  13. Harrison DM, Roy S, Oh J, Izbudak I, Pham D, Courtney S, Caffo B, Jones CK, van Zijl P, Calabresi PA (2015) Association of cortical lesion burden on 7-T magnetic resonance imaging with cognition and disability in multiple sclerosis. JAMA Neurol

  14. Granberg T, Bergendal G, Shams S, Aspelin P, Kristoffersen-Wiberg M, Fredrikson S, Martola J (2015) MRI-defined corpus callosal atrophy in multiple sclerosis: a comparison of volumetric measurements, corpus callosum area and index. J Neuroimaging: Off J Am Soc Neuroimaging

  15. Raz E, Branson B, Jensen JH, Bester M, Babb JS, Herbert J, Grossman RI, Inglese M (2015) Relationship between iron accumulation and white matter injury in multiple sclerosis: a case-control study. J Neurol 262:402–409

    Article  CAS  PubMed  Google Scholar 

  16. Preziosa P, Rocca MA, Mesaros S, Pagani E, Drulovic J, Stosic-Opincal T, Dackovic J, Copetti M et al (2014) Relationship between damage to the cerebellar peduncles and clinical disability in multiple sclerosis. Radiology 271:822–830

    Article  PubMed  Google Scholar 

  17. Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172:1025–1033

    Article  CAS  PubMed  Google Scholar 

  18. Brosnan CF, Bornstein MB, Bloom BR (1981) The effects of macrophage depletion on the clinical and pathologic expression of experimental allergic encephalomyelitis. J Immunol 126:614–620

    CAS  PubMed  Google Scholar 

  19. McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8:913–919

    Article  CAS  PubMed  Google Scholar 

  20. Flavin MP, Coughlin K, Ho LT (1997) Soluble macrophage factors trigger apoptosis in cultured hippocampal neurons. Neuroscience 80:437–448

    Article  CAS  PubMed  Google Scholar 

  21. Bogie JF, Timmermans S, Huynh-Thu VA, Irrthum A, Smeets HJ, Gustafsson JA, Steffensen KR, Mulder M et al (2012) Myelin-derived lipids modulate macrophage activity by liver X receptor activation. PLoS One 7, e44998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Williams K, Ulvestad E, Waage A, Antel JP, McLaurin J (1994) Activation of adult human derived microglia by myelin phagocytosis in vitro. J Neurosci Res 38:433–443

    Article  CAS  PubMed  Google Scholar 

  23. van der Laan LJ, Ruuls SR, Weber KS, Lodder IJ, Dopp EA, Dijkstra CD (1996) Macrophage phagocytosis of myelin in vitro determined by flow cytometry: phagocytosis is mediated by CR3 and induces production of tumor necrosis factor-alpha and nitric oxide. J Neuroimmunol 70:145–152

    Article  PubMed  Google Scholar 

  24. Sun X, Wang X, Chen T, Li T, Cao K, Lu A, Chen Y, Sun D et al (2010) Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system. PLoS One 5, e9380

    Article  PubMed  PubMed Central  Google Scholar 

  25. Boven LA, Van Meurs M, Van Zwam M, Wierenga-Wolf A, Hintzen RQ, Boot RG, Aerts JM, Amor S et al (2006) Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain: J Neurol 129:517–526

    Article  Google Scholar 

  26. Liu Y, Hao W, Letiembre M, Walter S, Kulanga M, Neumann H, Fassbender K (2006) Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci: Off J Soc Neurosci 26:12904–12913

    Article  CAS  Google Scholar 

  27. Gredler V, Ebner S, Schanda K, Forstner M, Berger T, Romani N, Reindl M (2010) Impact of human myelin on the maturation and function of human monocyte-derived dendritic cells. Clin Immunol (Orlando) 134:296–304

    Article  CAS  Google Scholar 

  28. Clarner T, Diederichs F, Berger K, Denecke B, Gan L, van der Valk P, Beyer C, Amor S et al (2012) Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia 60:1468–1480

    Article  PubMed  Google Scholar 

  29. Lassmann H (2011) Review: the architecture of inflammatory demyelinating lesions: implications for studies on pathogenesis. Neuropathol Appl Neurobiol 37:698–710

    Article  CAS  PubMed  Google Scholar 

  30. Koning N, Bo L, Hoek RM, Huitinga I (2007) Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. Ann Neurol 62:504–514

    Article  CAS  PubMed  Google Scholar 

  31. Kipp M, van der Valk P, Amor S (2012) Pathology of multiple sclerosis. CNS Neurol Disord Drug Targets 11:506–517

    Article  CAS  PubMed  Google Scholar 

  32. Paxinos G, Franklin K (2001) The mouse brain in stereotaxic coordinates. Academic, San Diego, p 160

    Google Scholar 

  33. van der Valk P, De Groot CJ (2000) Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathol Appl Neurobiol 26:2–10

    Article  PubMed  Google Scholar 

  34. Slowik A, Schmidt T, Beyer C, Amor S, Clarner T, Kipp M (2015) The sphingosine 1-phosphate receptor agonist FTY720 is neuroprotective after cuprizone-induced CNS demyelination. Br J Pharmacol 172:80–92

    Article  CAS  PubMed  Google Scholar 

  35. Baertling F, Kokozidou M, Pufe T, Clarner T, Windoffer R, Wruck CJ, Brandenburg LO, Beyer C et al (2010) ADAM12 is expressed by astrocytes during experimental demyelination. Brain Res 1326:1–14

    Article  CAS  PubMed  Google Scholar 

  36. Krauspe BM, Dreher W, Beyer C, Baumgartner W, Denecke B, Janssen K, Langhans CD, Clarner T, Kipp M (2014) Short-term cuprizone feeding verifies N-acetylaspartate quantification as a marker of neurodegeneration. J Mol Neurosci: MN

  37. Kipp M, Gingele S, Pott F, Clarner T, van der Valk P, Denecke B, Gan L, Siffrin V et al (2011) BLBP-expression in astrocytes during experimental demyelination and in human multiple sclerosis lesions. Brain Behav Immun 25:1554–1568

    Article  CAS  PubMed  Google Scholar 

  38. Clarner T, Janssen K, Nellessen L, Stangel M, Skripuletz T, Krauspe B, Hess FM, Denecke B et al (2015) CXCL10 triggers early microglial activation in the cuprizone model. J Immunol 194:3400–3413

    Article  CAS  PubMed  Google Scholar 

  39. Buschmann JP, Berger K, Awad H, Clarner T, Beyer C, Kipp M (2012) Inflammatory response and chemokine expression in the white matter corpus callosum and gray matter cortex region during cuprizone-induced demyelination. J Mol Neurosci: MN 48:66–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Doan V, Kleindienst AM, McMahon EJ, Long BR, Matsushima GK, Taylor LC (2013) Abbreviated exposure to cuprizone is sufficient to induce demyelination and oligodendrocyte loss. J Neurosci Res 91:363–373

    Article  CAS  PubMed  Google Scholar 

  41. Skripuletz T, Lindner M, Kotsiari A, Garde N, Fokuhl J, Linsmeier F, Trebst C, Stangel M (2008) Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. Am J Pathol 172:1053–1061

    Article  PubMed  PubMed Central  Google Scholar 

  42. Goldberg J, Daniel M, van Heuvel Y, Victor M, Beyer C, Clarner T, Kipp M (2013) Short-term cuprizone feeding induces selective amino acid deprivation with concomitant activation of an integrated stress response in oligodendrocytes. Cell Mol Neurobiol 33:1087–1098

    Article  CAS  PubMed  Google Scholar 

  43. Gregson NA (1989) Lysolipids and membrane damage: lysolecithin and its interaction with myelin. Biochem Soc Trans 17:280–283

    Article  CAS  PubMed  Google Scholar 

  44. Raine CS, Field EJ (1968) Nuclear structures in nerve cells in multiple sclerosis. Brain Res 10:266–268

    Article  CAS  PubMed  Google Scholar 

  45. Calabrese M, Poretto V, Favaretto A, Alessio S, Bernardi V, Romualdi C, Rinaldi F, Perini P et al (2012) Cortical lesion load associates with progression of disability in multiple sclerosis. Brain: J Neurol 135:2952–2961

    Article  Google Scholar 

  46. Kolasinski J, Stagg CJ, Chance SA, Deluca GC, Esiri MM, Chang EH, Palace JA, McNab JA et al (2012) A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology. Brain: J Neurol 135:2938–2951

    Article  Google Scholar 

  47. Geurts JJ, Bo L, Roosendaal SD, Hazes T, Daniels R, Barkhof F, Witter MP, Huitinga I et al (2007) Extensive hippocampal demyelination in multiple sclerosis. J Neuropathol Exp Neurol 66:819–827

    Article  PubMed  Google Scholar 

  48. Vercellino M, Masera S, Lorenzatti M, Condello C, Merola A, Mattioda A, Tribolo A, Capello E et al (2009) Demyelination, inflammation, and neurodegeneration in multiple sclerosis deep gray matter. J Neuropathol Exp Neurol 68:489–502

    Article  PubMed  Google Scholar 

  49. Geurts JJ, Bo L, Pouwels PJ, Castelijns JA, Polman CH, Barkhof F (2005) Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology. AJNR Am J Neuroradiol 26:572–577

    PubMed  Google Scholar 

  50. Fisher E, Lee JC, Nakamura K, Rudick RA (2008) Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 64:255–265

    Article  PubMed  Google Scholar 

  51. Calabrese M, Rocca MA, Atzori M, Mattisi I, Favaretto A, Perini P, Gallo P, Filippi M (2010) A 3-year magnetic resonance imaging study of cortical lesions in relapse-onset multiple sclerosis. Ann Neurol 67:376–383

    PubMed  Google Scholar 

  52. Feuillet L, Reuter F, Audoin B, Malikova I, Barrau K, Cherif AA, Pelletier J (2007) Early cognitive impairment in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 13:124–127

    Article  CAS  PubMed  Google Scholar 

  53. Calabrese M, De Stefano N, Atzori M, Bernardi V, Mattisi I, Barachino L, Morra A, Rinaldi L et al (2007) Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Arch Neurol 64:1416–1422

    Article  PubMed  Google Scholar 

  54. Giorgio A, Stromillo ML, Rossi F, Battaglini M, Hakiki B, Portaccio E, Federico A, Amato MP et al (2011) Cortical lesions in radiologically isolated syndrome. Neurology 77:1896–1899

    Article  CAS  PubMed  Google Scholar 

  55. Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, Bruck W, Parisi JE et al (2011) Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 365:2188–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T (1999) Cortical lesions in multiple sclerosis. Brain : J Neurol 122(Pt 1):17–26

    Article  Google Scholar 

  57. Sastre-Garriga J, Ingle GT, Chard DT, Cercignani M, Ramio-Torrenta L, Miller DH, Thompson AJ (2005) Grey and white matter volume changes in early primary progressive multiple sclerosis: a longitudinal study. Brain: J Neurol 128:1454–1460

    Article  Google Scholar 

  58. Tedeschi G, Lavorgna L, Russo P, Prinster A, Dinacci D, Savettieri G, Quattrone A, Livrea P et al (2005) Brain atrophy and lesion load in a large population of patients with multiple sclerosis. Neurology 65:280–285

    Article  CAS  PubMed  Google Scholar 

  59. Daams M, Geurts JJ, Barkhof F (2013) Cortical imaging in multiple sclerosis: recent findings and ‘grand challenges’. Curr Opin Neurol 26:345–352

    Article  PubMed  Google Scholar 

  60. Dutta R, Trapp BD (2014) Relapsing and progressive forms of multiple sclerosis: insights from pathology. Curr Opin Neurol 27:271–278

    Article  PubMed  PubMed Central  Google Scholar 

  61. van Horssen J, Brink BP, de Vries HE, van der Valk P, Bo L (2007) The blood-brain barrier in cortical multiple sclerosis lesions. J Neuropathol Exp Neurol 66:321–328

    Article  PubMed  Google Scholar 

  62. Hiremath MM, Saito Y, Knapp GW, Ting JP, Suzuki K, Matsushima GK (1998) Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 92:38–49

    Article  CAS  PubMed  Google Scholar 

  63. Bernal-Chico A, Canedo M, Manterola A, Victoria Sanchez-Gomez M, Perez-Samartin A, Rodriguez-Puertas R, Matute C, Mato S (2015) Blockade of monoacylglycerol lipase inhibits oligodendrocyte excitotoxicity and prevents demyelination in vivo. Glia 63:163–176

    Article  PubMed  Google Scholar 

  64. Yamamoto S, Gotoh M, Kawamura Y, Yamashina K, Yagishita S, Awaji T, Tanaka M, Maruyama K et al (2014) Cyclic phosphatidic acid treatment suppress cuprizone-induced demyelination and motor dysfunction in mice. Eur J Pharmacol 741:17–24

    Article  CAS  PubMed  Google Scholar 

  65. Gao X, Gillig TA, Ye P, D’Ercole AJ, Matsushima GK, Popko B (2000) Interferon-gamma protects against cuprizone-induced demyelination. Mol Cell Neurosci 16:338–349

    Article  CAS  PubMed  Google Scholar 

  66. Fan R, Xu F, Previti ML, Davis J, Grande AM, Robinson JK, Van Nostrand WE (2007) Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid. J Neurosci: Off J Soc Neurosci 27:3057–3063

    Article  CAS  Google Scholar 

  67. Skripuletz T, Miller E, Moharregh-Khiabani D, Blank A, Pul R, Gudi V, Trebst C, Stangel M (2010) Beneficial effects of minocycline on cuprizone induced cortical demyelination. Neurochem Res 35:1422–1433

    Article  CAS  PubMed  Google Scholar 

  68. Triarhou LC, Herndon RM (1985) Effect of macrophage inactivation on the neuropathology of lysolecithin-induced demyelination. Br J Exp Pathol 66:293–301

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kipp M, Norkus A, Krauspe B, Clarner T, Berger K, van der Valk P, Amor S, Beyer C (2011) The hippocampal fimbria of cuprizone-treated animals as a structure for studying neuroprotection in multiple sclerosis. Inflamm Res 60:723–726. doi:10.1007/s00011-011-0339-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Voss EV, Skuljec J, Gudi V, Skripuletz T, Pul R, Trebst C, Stangel M (2012) Characterisation of microglia during de- and remyelination: can they create a repair promoting environment? Neurobiol Dis 45:519–528

    Article  CAS  PubMed  Google Scholar 

  71. Hall SM, Gregson NA (1971) The in vivo and ultrastructural effects of injection of lysophosphatidyl choline into myelinated peripheral nerve fibres of the adult mouse. J Cell Sci 9:769–789

    CAS  PubMed  Google Scholar 

  72. Webster GR (1957) Clearing action of lysolecithin on brain homogenates. Nature 180:660–661

    Article  CAS  PubMed  Google Scholar 

  73. Merrill JE (2009) In vitro and in vivo pharmacological models to assess demyelination and remyelination. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 34:55–73

    Article  CAS  Google Scholar 

  74. Foster RE, Kocsis JD, Malenka RC, Waxman SG (1980) Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum. Electron-microscopic observations. J Neurol Sci 48:221–231

    Article  CAS  PubMed  Google Scholar 

  75. Mitchell J, Caren CA (1982) Degeneration of non-myelinated axons in the rat sciatic nerve following lysolecithin injection. Acta Neuropathol 56:187–193

    Article  CAS  PubMed  Google Scholar 

  76. Woodruff RH, Franklin RJ (1999) Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: a comparative study. Glia 25:216–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by grants of Novartis Pharma GmbH (MK) and the Stichting MS research (SA). The authors thank H. Helten and P. Ibold (Aachen) for their excellent technical assistance. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kipp.

Additional information

René Große-Veldmann and Birte Becker contributed equally to this work as first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Große-Veldmann, R., Becker, B., Amor, S. et al. Lesion Expansion in Experimental Demyelination Animal Models and Multiple Sclerosis Lesions. Mol Neurobiol 53, 4905–4917 (2016). https://doi.org/10.1007/s12035-015-9420-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9420-y

Keywords

Navigation