Skip to main content
Log in

Pharmacological Interventions to Ameliorate Neuropathological Symptoms in a Mouse Model of Lafora Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Lafora disease (LD, OMIM 254780) is a rare fatal neurodegenerative disorder that usually occurs during childhood with generalized tonic-clonic seizures, myoclonus, absences, drop attacks, or visual seizures. Unfortunately, at present, available treatments are only palliatives and no curative drugs are available yet. The hallmark of the disease is the accumulation of insoluble polyglucosan inclusions, called Lafora bodies (LBs), within the neurons but also in heart, muscle, and liver cells. Mouse models lacking functional EPM2A or EPM2B genes (the two major loci related to the disease) recapitulate the Lafora disease phenotype: they accumulate polyglucosan inclusions, show signs of neurodegeneration, and have a dysregulation of protein clearance and endoplasmic reticulum stress response. In this study, we have subjected a mouse model of LD (Epm2b−/−) to different pharmacological interventions aimed to alleviate protein clearance and endoplasmic reticulum stress. We have used two chemical chaperones, trehalose and 4-phenylbutyric acid. In addition, we have used metformin, an activator of AMP-activated protein kinase (AMPK), as it has a recognized neuroprotective role in other neurodegenerative diseases. Here, we show that treatment with 4-phenylbutyric acid or metformin decreases the accumulation of Lafora bodies and polyubiquitin protein aggregates in the brain of treated animals. 4-Phenylbutyric acid and metformin also diminish neurodegeneration (measured in terms of neuronal loss and reactive gliosis) and ameliorate neuropsychological tests of Epm2b−/− mice. As these compounds have good safety records and are already approved for clinical uses on different neurological pathologies, we think that the translation of our results to the clinical practice could be straightforward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

LB:

Lafora bodies

LD:

Lafora disease

4-PBA:

4-Phenylbutyric acid

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  1. Delgado-Escueta AV (2007) Advances in Lafora progressive myoclonus epilepsy. Curr Neurol Neurosci Rep 7:428–433

    Article  CAS  PubMed  Google Scholar 

  2. Monaghan TS, Delanty N (2010) Lafora disease: epidemiology, pathophysiology and management. CNS Drugs 24:549–561

    Article  CAS  PubMed  Google Scholar 

  3. Minassian BA, Lee JR, Herbrick JA, Huizenga J, Soder S et al (1998) Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet 20:171–174

    Article  CAS  PubMed  Google Scholar 

  4. Serratosa JM, Gomez-Garre P, Gallardo ME, Anta B, de Bernabe DB et al (1999) A novel protein tyrosine phosphatase gene is mutated in progressive myoclonus epilepsy of the Lafora type (EPM2). Hum Mol Genet 8:345–352

    Article  CAS  PubMed  Google Scholar 

  5. Chan EM, Young EJ, Ianzano L, Munteanu I, Zhao X et al (2003) Mutations in NHLRC1 cause progressive myoclonus epilepsy. Nat Genet 35:125–127

    Article  CAS  PubMed  Google Scholar 

  6. Lohi H, Ianzano L, Zhao XC, Chan EM, Turnbull J et al (2005) Novel glycogen synthase kinase 3 and ubiquitination pathways in progressive myoclonus epilepsy. Hum Mol Genet 14:2727–2736

    Article  CAS  PubMed  Google Scholar 

  7. Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J et al (2007) Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 10:1407–1413

    Article  CAS  PubMed  Google Scholar 

  8. Solaz-Fuster MC, Gimeno-Alcaniz JV, Ros S, Fernandez-Sanchez ME, Garcia-Fojeda B et al (2008) Regulation of glycogen synthesis by the laforin-malin complex is modulated by the AMP-activated protein kinase pathway. Hum Mol Genet 17:667–678

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Wang Y, Wu C, Liu Y, Zheng P (2009) Deletions and missense mutations of EPM2A exacerbate unfolded protein response and apoptosis of neuronal cells induced by endoplasm reticulum stress. Hum Mol Genet 18:2622–2631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Vernia S, Rubio T, Heredia M, Rodriguez de Cordoba S, Sanz P (2009) Increased endoplasmic reticulum stress and decreased proteasomal function in Lafora disease models lacking the phosphatase laforin. PLoS One 4:e5907

    Article  PubMed Central  PubMed  Google Scholar 

  11. Zeng L, Wang Y, Baba O, Zheng P, Liu Y (2012) Laforin is required for the functional activation of malin in endoplasmic reticulum stress resistance in neuronal cells. FEBS J 279:2467–2478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Rao SN, Maity R, Sharma J, Dey P, Shankar SK et al (2010) Sequestration of chaperones and proteasome into Lafora bodies and proteasomal dysfunction induced by Lafora disease-associated mutations of malin. Hum Mol Genet 19:4726–4734

    Article  CAS  PubMed  Google Scholar 

  13. Aguado C, Sarkar S, Korolchuk VI, Criado O, Vernia S et al (2010) Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Hum Mol Genet 19:2867–2876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Criado O, Aguado C, Gayarre J, Duran-Trio L, Garcia-Cabrero AM et al (2012) Lafora bodies and neurological defects in malin-deficient mice correlate with impaired autophagy. Hum Mol Genet 21:1521–1533

    Article  CAS  PubMed  Google Scholar 

  15. Hetz C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15:233–249

    Article  CAS  PubMed  Google Scholar 

  16. Sinadinos C, Valles-Ortega J, Boulan L, Solsona E, Tevy MF et al (2014) Neuronal glycogen synthesis contributes to physiological aging. Aging Cell 13:935–945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ricobaraza A, Cuadrado-Tejedor M, Perez-Mediavilla A, Frechilla D, Del Rio J et al (2009) Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer’s disease mouse model. Neuropsychopharmacology 34:1721–1732

    Article  CAS  PubMed  Google Scholar 

  18. Wiley JC, Meabon JS, Frankowski H, Smith EA, Schecterson LC et al (2010) Phenylbutyric acid rescues endoplasmic reticulum stress-induced suppression of APP proteolysis and prevents apoptosis in neuronal cells. PLoS One 5:e9135

    Article  PubMed Central  PubMed  Google Scholar 

  19. Zhou W, Bercury K, Cummiskey J, Luong N, Lebin J et al (2011) Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell culture and in animal models of Parkinson disease. J Biol Chem 286:14941–14951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR et al (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10:148–154

    Article  CAS  PubMed  Google Scholar 

  21. Chen Q, Haddad GG (2004) Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammals. J Exp Biol 207:3125–3129

    Article  CAS  PubMed  Google Scholar 

  22. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262

    Article  CAS  PubMed  Google Scholar 

  23. Carling D, Thornton C, Woods A, Sanders MJ (2012) AMP-activated protein kinase: new regulation, new roles? Biochem J 445:11–27

    Article  CAS  PubMed  Google Scholar 

  24. Poels J, Spasic MR, Callaerts P, Norga KK (2009) Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy. Bioessays 31:944–952

    Article  CAS  PubMed  Google Scholar 

  25. Han Y, Xie N, Cao L, Zhao X, Liu X et al (2011) Adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor gamma coactivator 1alpha signaling provides neuroprotection in status epilepticus in rats. Neurosci Lett 500:133–138

    Article  CAS  PubMed  Google Scholar 

  26. Dulovic M, Jovanovic M, Xilouri M, Stefanis L, Harhaji-Trajkovic L et al (2014) The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro. Neurobiol Dis 63:1–11

    Article  CAS  PubMed  Google Scholar 

  27. Ashabi G, Khodagholi F, Khalaj L, Goudarzvand M, Nasiri M (2014) Activation of AMP-activated protein kinase by metformin protects against global cerebral ischemia in male rats: interference of AMPK/PGC-1alpha pathway. Metab Brain Dis 29:47–58

    Article  CAS  PubMed  Google Scholar 

  28. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367–370

    Article  CAS  Google Scholar 

  29. Ogawa N, Hirose Y, Ohara S, Ono T, Watanabe Y (1985) A simple quantitative bradykinesia test in MPTP-treated mice. Res Commun Chem Pathol Pharmacol 50:435–441

    CAS  PubMed  Google Scholar 

  30. Stanford SC (2007) The Open Field Test: reinventing the wheel. J Psychopharmacol 21:134–135

    Article  PubMed  Google Scholar 

  31. Luong TN, Carlisle HJ, Southwell A, Patterson PH (2011) Assessment of motor balance and coordination in mice using the balance beam. J Vis Exp 49:2376

    PubMed  Google Scholar 

  32. R-Core-Team (2014) A language and environment for statistical computing. Foundation for Statistical Computing http://www.R-project.org/

  33. Valles-Ortega J, Duran J, Garcia-Rocha M, Bosch C, Saez I et al (2011) Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. EMBO Mol Med 3:667–681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ortolano S, Vieitez I, Agis-Balboa RC, Spuch C (2014) Loss of GABAergic cortical neurons underlies the neuropathology of Lafora disease. Mol Brain 7:7

    Article  PubMed Central  PubMed  Google Scholar 

  35. Turnbull J, DePaoli-Roach AA, Zhao X, Cortez MA, Pencea N et al (2011) PTG depletion removes Lafora bodies and rescues the fatal epilepsy of Lafora disease. PLoS Genet 7:e1002037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Pederson BA, Turnbull J, Epp JR, Weaver SA, Zhao X et al (2013) Inhibiting glycogen synthesis prevents Lafora disease in a mouse model. Ann Neurol 74:297–300

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Turnbull J, Epp JR, Goldsmith D, Zhao X, Pencea N et al (2014) PTG protein depletion rescues malin-deficient Lafora disease in mouse. Ann Neurol 75:442–446

    Article  CAS  PubMed  Google Scholar 

  38. Duran J, Gruart A, Garcia-Rocha M, Delgado-Garcia JM, Guinovart JJ (2014) Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum Mol Genet 23:3147–3156

    Article  CAS  PubMed  Google Scholar 

  39. Carling D, Hardie DG (1989) The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochim Biophys Acta 1012:81–86

    Article  CAS  PubMed  Google Scholar 

  40. Tagliabracci VS, Girard JM, Segvich D, Meyer C, Turnbull J et al (2008) Abnormal metabolism of glycogen phosphate as a cause for Lafora disease. J Biol Chem 283:33816–33825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. DePaoli-Roach AA, Tagliabracci VS, Segvich DM, Meyer CM, Irimia JM et al (2010) Genetic depletion of the malin E3 ubiquitin ligase in mice leads to Lafora bodies and the accumulation of insoluble laforin. J Biol Chem 285:25372–25381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Turnbull J, Wang P, Girard JM, Ruggieri A, Wang TJ et al (2010) Glycogen hyperphosphorylation underlies Lafora body formation. Ann Neurol 68:925–933

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We want to thank Carla Rubio-Villena and Maria Adelaida Garcia-Gimeno for their help in the analyses of glycogen-related enzymes. This work was supported by grants from the Spanish Ministry of Education and Science (SAF2011-27442), Fundació La Marato de TV3 (ref. 100130), and an ACCI2012 action from CIBERER. A.B.. holds a postdoctoral fellowship from the Program “Junta para la Ampliación de Estudios” (JAE-Doc) co-funded by the European Social Fund (ESF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascual Sanz.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(GIF 139 kb)

High Resolution Image (TIFF 979 kb)

ESM 2

(GIF 180 kb)

High Resolution Image (TIFF 1250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berthier, A., Payá, M., García-Cabrero, A.M. et al. Pharmacological Interventions to Ameliorate Neuropathological Symptoms in a Mouse Model of Lafora Disease. Mol Neurobiol 53, 1296–1309 (2016). https://doi.org/10.1007/s12035-015-9091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9091-8

Keywords

Navigation