Skip to main content
Log in

Silibinin Prevents Autophagic Cell Death upon Oxidative Stress in Cortical Neurons and Cerebral Ischemia-Reperfusion Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuronal apoptosis and oxidative stress are involved in most of the neurodegenerative diseases, promoting neuron survival is critical for therapy. Silibinin (SLB), which is derived from the seeds of Silybinisus laborinum L., has been widely used as an antioxidant. Here we tested the neuroprotective effects of SLB and the involved molecular mechanisms. We demonstrated that SLB promoted neuron viability upon hydrogen peroxide (H2O2) challenge and reduced hypoxia/ischemia injury in the middle cerebral artery occlusion (MCAO) mouse model. SLB reversed the decreased level of procaspase-3 and balanced Bcl-2 and Bax expression upon H2O2 insult to inhibit cell apoptosis. Furthermore, SLB suppressed the activation of autophagy by decreasing microtubule-associated protein 1 light chain 3 (LC3-II) and Beclin-1 levels under oxidative stress accordingly. SLB phosphorylated protein kinase B (Akt-1) at Ser473 in a time- and dose-dependent manner. The inhibitor for phosphoinositide-3-kinase (PI3K) wortmannin abrogated SLB-induced phosphorylation of Akt-1 and mTOR, decreased the suppression of autophagy, and therefore abolished SLB-mediated neuroprotection. All the data suggested that SLB protected neurons by inhibiting both the mitochondrial and autophagic cell death pathways. This study opens new avenues for the use of SLB in treatment of central nervous system (CNS) diseases in which oxidative stress plays a major role in disease pathogenesis. Given that it occurs naturally with low toxicity and pleiotropic effects that benefit the nervous system, SLB acts potentially as a novel therapy for ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

DMEM/F12:

Dulbecco’s modified Eagle’s medium/F12

DMSO:

Dimethyl sulfoxide

HBSS:

Hank’s balanced salt solution

H2O2 :

Hydrogen peroxide

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PI:

Propidium iodide

Bcl-2:

B cell lymphoma 2 protein

Bax:

Bcl-2-associated X protein

PI3K/Akt-1:

Phosphoinositide-3-kinase/protein kinase B

LC3:

Microtubule-associated protein 1A/1B-light chain 3

mTOR:

Mammalian target of rapamycin

MCAO:

Middle cerebral artery occlusion

TTC:

2,3,5-Triphenyltetrazolium chloride

PVDF:

Polyvinylidene difluoride

ANOVA:

Analysis of variance

References

  1. Koike M, Shibata M, Tadakoshi M et al (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172:454–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lim GP, Chu T, Yang F et al (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    CAS  PubMed  Google Scholar 

  3. Janda E, Isidoro C, Carresi C et al (2012) Defective autophagy in Parkinson’s disease: role of oxidative stress. Mol Neurobiol 46:639–661

    Article  CAS  PubMed  Google Scholar 

  4. Brandon-Warner E, Sugg JA, Schrum LW et al (2010) Silibinin inhibits ethanol metabolism and ethanol-dependent cell proliferation in an in vitro model of hepatocellular carcinoma. Cancer Lett 291:120–129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Yin F, Liu J, Ji X et al (2011) Silibinin: a novel inhibitor of Abeta aggregation. Neurochem Int 58:399–403

    Article  CAS  PubMed  Google Scholar 

  6. Lu P, Mamiya T, Lu LL et al (2009) Silibinin prevents amyloid beta peptide-induced memory impairment and oxidative stress in mice. Br J Pharmacol 157:1270–1277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Murata N, Murakami K, Ozawa Y et al (2010) Silymarin attenuated the amyloid beta plaque burden and improved behavioral abnormalities in an Alzheimer’s disease mouse model. Biosci Biotechnol Biochem 74:2299–2306

    Article  CAS  PubMed  Google Scholar 

  8. Hu Z, Yang B, Mo X et al. (2014) Mechanism and regulation of autophagy and its role in neuronal diseases. Mol Neurobiol

  9. Sheng R, Liu XQ, Zhang LS et al (2012) Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy 8:310–325

    Article  CAS  PubMed  Google Scholar 

  10. Carloni S, Albertini MC, Galluzzi L et al (2014) Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp Neurol 255:103–112

    Article  CAS  PubMed  Google Scholar 

  11. Pattingre S, Tassa A, Qu X et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  CAS  PubMed  Google Scholar 

  12. Wu Y, Peng H, Cui M et al (2009) CXCL12 increases human neural progenitor cell proliferation through Akt-1/FOXO3a signaling pathway. J Neurochem 109:1157–1167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Yang Q, Yang ZF, Liu SB et al (2010) Neuroprotective effects of hydroxysafflor yellow A against excitotoxic neuronal death partially through down-regulation of NR2B-containing NMDA receptors. Neurochem Res 35:1353–1360

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Sirianni A, Pei Z et al (2011) The melatonin MT1 receptor axis modulates mutant Huntingtin-mediated toxicity. J Neurosci 31:14496–14507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wu YM, Jin R, Yang L et al (2013) Phosphatidylinositol 3 kinase/protein kinase B is responsible for the protection of paeoniflorin upon H(2)O(2)-induced neural progenitor cell injury. Neuroscience 240:54–62

    Article  CAS  PubMed  Google Scholar 

  16. Li YJ, Yang Q, Zhang K et al (2013) Cytisine confers neuronal protection against excitotoxic injury by down-regulating GluN2B-containing NMDA receptors. Neurotoxicology 34:219–225

    Article  PubMed  Google Scholar 

  17. Wang X, Figueroa BE, Stavrovskaya IG et al (2009) Friedlander RM: methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke 40:1877–1885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Wen YD, Sheng R, Zhang LS et al (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4:762–769

    Article  CAS  PubMed  Google Scholar 

  19. St-Pierre J, Drori S, Uldry M et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  CAS  PubMed  Google Scholar 

  20. Kim J, Wong PK (2009) Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling. Stem Cells 27:1987–1998

    Article  CAS  PubMed  Google Scholar 

  21. Kirkland RA, Franklin JL (2007) Bax affects production of reactive oxygen by the mitochondria of non-apoptotic neurons. Exp Neurol 204:458–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zhang S, Ye J, Dong G (2010) Neuroprotective effect of baicalein on hydrogen peroxide-mediated oxidative stress and mitochondrial dysfunction in PC12 cells. J Mol Neurosci 40:311–320

    Article  PubMed  Google Scholar 

  23. Maheshwari A, Misro MM, Aggarwal A et al (2011) N-acetyl-L-cysteine counteracts oxidative stress and prevents H2O2 induced germ cell apoptosis through down-regulation of caspase-9 and JNK/c-Jun. Mol Reprod Dev 78:69–79

    Article  CAS  PubMed  Google Scholar 

  24. Lee SH, Heo JS, Lee MY et al (2008) Effect of dihydrotestosterone on hydrogen peroxide-induced apoptosis of mouse embryonic stem cells. J Cell Physiol 216:269–275

    Article  CAS  PubMed  Google Scholar 

  25. Zhao H, Sapolsky RM, Steinberg GK (2006) Phosphoinositide-3-kinase/akt survival signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol 34:249–270

    Article  CAS  PubMed  Google Scholar 

  26. Brazil DP, Yang ZZ, Hemmings BA (2004) Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29:233–242

    Article  CAS  PubMed  Google Scholar 

  27. Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344–1348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Tan CC, Yu JT, Tan MS et al (2014) Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol Aging 35:941–957

    Article  PubMed  Google Scholar 

  29. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  CAS  PubMed  Google Scholar 

  30. Levine B (2007) Cell biology: autophagy and cancer. Nature 446:745–747

    Article  CAS  PubMed  Google Scholar 

  31. Li Y, Li S, Qin X et al (2014) The pleiotropic roles of sphingolipid signaling in autophagy. Cell Death Dis 5:e1245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Guerra-Araiza C, Alvarez-Mejia AL, Sanchez-Torres S et al (2013) Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases. Free Radic Res 47:451–462

    Article  CAS  PubMed  Google Scholar 

  33. Schroeter H, Boyd C, Spencer JP et al (2002) MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging 23:861–880

    Article  CAS  PubMed  Google Scholar 

  34. Spencer B, Potkar R, Trejo M et al (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 29:13578–13588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Antonsson B (2004) Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Mol Cell Biochem 256–257:141–155

  37. Itoh N, Tsujimoto Y, Nagata S et al (1993) Effect of bcl-2 on Fas antigen-mediated cell death. J Immunol 151:621–627

    CAS  PubMed  Google Scholar 

  38. Bruce-Keller AJ, Begley JG, Fu W et al (1998) Bcl-2 protects isolated plasma and mitochondrial membranes against lipid peroxidation induced by hydrogen peroxide and amyloid beta-peptide. J Neurochem 70:31–39

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported financially by National Natural Science Foundation of China No. 81101457 and 81371322 (to Dr. Wu) and Scientific Research Foundation for the Returned Overseas Chinese Scholars No. HG3402 (to Dr. Wu).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Gao Zhao or Yu-Mei Wu.

Additional information

Min Wang and Yu-Jiao Li contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, YJ., Ding, Y. et al. Silibinin Prevents Autophagic Cell Death upon Oxidative Stress in Cortical Neurons and Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 53, 932–943 (2016). https://doi.org/10.1007/s12035-014-9062-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9062-5

Keywords

Navigation