Skip to main content

Advertisement

Log in

Gadd45b Mediates Axonal Plasticity and Subsequent Functional Recovery After Experimental Stroke in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stroke causes devastating and irreversible losses of neurological function with subsequent slow and incomplete recovery of lost brain functions, because of the brain’s limited capacity for brain plasticity. Growth arrest and DNA-damage-inducible protein 45 beta (Gadd45b) has recently been demonstrated as a candidate plasticity-related gene, making it an excellent candidate molecule that has therapeutic potential. Here, we examine whether in vivo blockage of Gadd45b affects axonal plasticity and subsequent functional recovery after focal brain infarction. Adult male Sprague-Dawley rats were subjected to cerebral ischemia by middle cerebral artery occlusion (MCAO). We adopted RNA interference (RNAi) mediated by a lentiviral vector (LV) as a means of suppressing the expression of Gadd45b. Functional recovery was assessed with a battery of tests that measured skilled forelimb reaching and forelimb balance controlling. Axonal reorganization at the level of the red nucleus was revealed by anatomical studies. Axonal regeneration was measured by elevated expression of growth-associated protein 43 (GAP-43). The levels of brain-derived neurotrophic factor (BDNF), cyclic AMP (cAMP), protein kinase A (PKA), and Rho-kinase (ROCK) were determined. Gadd45b-RNAi significantly inhibited axonal plasticity (axonal regeneration and axonal reorganization) after MCAO. This inhibition was paralleled by worse functional recovery performance on several behavioral measures. Gadd45b-RNAi also significantly decreased the expression levels of both BDNF and cAMP/PKA/phosphorylated cAMP response element-binding protein (pCREB) pathway and promoted ROCK expression. We conclude that Gadd45b stimulates recovery after stroke by enhancing axonal plasticity required for brain repair. Pharmacological targeting of Gadd45b provides new opportunities for stroke treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Gadd45b:

Growth arrest and DNA-damage-inducible protein 45 beta

MCAO:

Middle cerebral artery occlusion

RNAi:

RNA interference

LV:

Lentiviral vectors

CCA:

Common carotid artery

ECA:

External carotid artery

ICA:

Internal carotid artery

GFP:

Green fluorescent protein

TTC:

Triphenyltetrazolium chloride

BDNF:

Brain-derived neurotrophic factor

References

  1. Endres M, Engelhardt B, Koistinaho J, Lindvall O, Meairs S, Mohr JP, Planas A, Rothwell N, Schwaninger M, Schwab ME, Vivien D, Wieloch T, Dirnagl U (2008) Improving outcome after stroke: overcoming the translational road block. Cerebrovasc Dis 25:268–78

    Article  PubMed  Google Scholar 

  2. Nelles G, Spiekramann G, Jueptner M, Leonhardt G, Müller S, Gerhard H, Diener HC (1999) Evolution of functional reorganization in hemiplegic stroke: a serial positron emission to mographic activation study. Ann Neurol 46:901–9

    Article  CAS  PubMed  Google Scholar 

  3. Stroemer RP, Kent TA, Hulsebosch CE (1995) Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke 26:2135–44

    Article  CAS  PubMed  Google Scholar 

  4. Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS (1992) Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 31:463–72

    Article  CAS  PubMed  Google Scholar 

  5. Kawamata T, Dietrich WD, Schallert T, Gotts JE, Cocke RR, Benowitz LI, Finklestein SP (1997) Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc Natl Acad Sci U S A 94:8179–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma DK, Jang MH, Guo JU, Kitabatake Y, Chang ML, Pow-Anpongkul N, Flavell RA, Lu B, Ming GL, Song H (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323:1074–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sultan FA, Wang J, Tront J, Liebermann DA, Sweatt JD (2012) Genetic deletion of Gadd45b, a regulator of active DNA demethylation, enhances long-term memory and synaptic plasticity. J Neurosci 32:17059–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barrette B, Calvo E, Vallières N, Lacroix S (2010) Transcriptional profiling of the injured sciatic nerve of mice carrying the Wld(S) mutant gene: identification of genes involved in neuroprotection, neuroinflammation, and nerve regeneration. Brain Behav Immun 24(8):1254–67

    Article  CAS  PubMed  Google Scholar 

  9. Suri D, Veenit V, Sarkar A, Thiagarajan D, Kumar A, Nestler EJ, Galande S, Vaidya VA (2013) Early stress evokes age-dependent biphasic changes in hippocampal neurogenesis, BDNF expression, and cognition. Biol Psychiatry 73:658–66

    Article  CAS  PubMed  Google Scholar 

  10. Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22:123–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hennigan A, O’Callaghan RM, Kelly AM (2007) Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem Soc Trans 35:424–427

    Article  CAS  PubMed  Google Scholar 

  12. Beck T, Lindholm D, Castren E, Wree A (1994) Brain-derived neurotrophic factor protects against ischemic cell damage in rat hippocampus. J Cereb Blood Flow Metab 14:689–692

    Article  CAS  PubMed  Google Scholar 

  13. Ploughman M, Windle V, MacLellan CL, White N, Dore JJ, Corbett D (2009) Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke 40:1490

    Article  CAS  PubMed  Google Scholar 

  14. Kim G, Kim E (2013) The effects of antecedent exercise on motor function recovery and brain-derived neurotrophic factor expression after focal cerebral ischemia in rats. J Phys Ther Sci 25:553–6

    Article  PubMed  PubMed Central  Google Scholar 

  15. Almli CR, Levy TJ, Han BH, Shah AR, Gidday JM, Holtzman DM (2000) BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia. Exp Neurol 166:99–114

    Article  CAS  PubMed  Google Scholar 

  16. Ferrer I, Ballabriga J, Martí E, Pérez E, Alberch J, Arenas E (1998) BDNF up-regulates TrkB protein and prevents the death of CA1 neurons following transient forebrain ischemia. Brain Pathol 8:253–261

    Article  CAS  PubMed  Google Scholar 

  17. Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD (1996) Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 27:1616–1622

    Article  CAS  PubMed  Google Scholar 

  18. Liu B, Li J, Li L, Li C (2012) Electrical stimulation of cerebellar fastigial nucleus promotes the expression of growth arrest and DNA damage inducible gene β and motor function recovery in cerebral ischemia/reperfusion rats. Neurosci Lett 520:110–114

    Article  CAS  PubMed  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  20. Feng J, Wang T, Li Q, Wu X, Qin X (2012) RNA interference against repulsive guidance molecule A improves axon sprout and neural function recovery of rats after MCAO/reperfusion. Exp Neurol 238:235–42

    Article  CAS  PubMed  Google Scholar 

  21. Hunter AJ, Hatcher J, Virley D, Nelson P, Irving E, Hadingham SJ, Parsons AA (2000) Functional assessments in mice and rats after focal stroke. Neuropharmacology 39:806–816

    Article  CAS  PubMed  Google Scholar 

  22. Montoya CP, Campbell-Hope LJ, Pemberton KD, Dunnett SB (1991) The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods 36:219–228

    Article  CAS  PubMed  Google Scholar 

  23. Goldstein LB, Davis JN (2001) Beam-walking in rats: studies towards developing an animal model of functional recovery after brain injury. J Neurosci Methods 31:101–7

    Article  Google Scholar 

  24. Segura T, Calleja S, Jordan J (2008) Recommendations and treatment strategies for the management of acute ischemic stroke. Expert Opin Pharmacother 9:1071–1085

    Article  CAS  PubMed  Google Scholar 

  25. Nudo RJ, Wise BM, SiFuentes F, Milliken GW (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272:1791–4

    Article  CAS  PubMed  Google Scholar 

  26. Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, Kennedy DN, Finklestein SP, Rosen BR (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28:2518–27

    Article  CAS  PubMed  Google Scholar 

  27. Ko SB, Yoon BW (2013) Mechanisms of functional recovery after stroke. Front Neurol Neurosci 32:1–8

    Article  PubMed  Google Scholar 

  28. Stroemer RP, Kent TA, Hulsebosch CE (1993) Acute increase in expression of growth associated protein GAP43 following cortical ischemia in rat. Neurosci Lett 162:51–54

    Article  CAS  PubMed  Google Scholar 

  29. Papadopoulos CM, Tsai SY, Alsbiei T, O’Brien TE, Schwab ME, Kartje GL (2002) Functional recovery and neuroanatomical plasticity following middle cerebral artery occlusion and IN-1 antibody treatment in the adult rat. Ann Neurol 51:433–41

    Article  PubMed  Google Scholar 

  30. Chen P, Goldberg DE, Kolb B, Lanser M, Benowitz LI (2002) Inosine induces axonal rewiring and improves behavioral outcome after stroke. Proc Natl Acad Sci U S A 99:9031–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schabitz WR, Berger C, Kollmar R, Seitz M, Tanay E, Kiessling M, Schwab S, Sommer C (2004) Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke 35:992–997

    Article  PubMed  Google Scholar 

  32. Schäbitz WR, Steigleder T, Cooper-Kuhn CM, Schwab S, Sommer C, Schneider A, Kuhn HG (2007) Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke 38:2165–72

    Article  PubMed  Google Scholar 

  33. Ploughman M, Granter-Button S, Chernenko G, Attwood Z, Tucker BA, Mearow KM, Corbett D (2007) Exercise intensity influences the temporal profile of growth factors involved in neuronal plasticity following focal ischemia. Brain Res 1150:207–216

    Article  CAS  PubMed  Google Scholar 

  34. Muller HD, Hanumanthiah KM, Diederich K, Schwab S, Schabitz WR, Sommer C (2008) Brain-derived neurotrophic factor but not forced arm use improves long-term outcome after photothrombotic stroke and transiently upregulates binding densities of excitatory glutamate receptors in the rat brain. Stroke 39:1012–1021

    Article  PubMed  Google Scholar 

  35. Cui X, Chopp M, Zacharek A, Roberts C, Buller B, Ion M, Chen J (2010) Niacin treatment of stroke increases synaptic plasticity and axon growth in rats. Stroke 41:2044–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cui X, Chopp M, Shehadah A, Zacharek A, Kuzmin-Nichols N, Sanberg CD, Dai J, Zhang C, Ueno Y, Roberts C, Chen J (2011) Therapeutic benefit of treatment of stroke with simvastatin and human umbilical cord blood cells: neurogenesis, synaptic plasticity, and axon growth. Cell Transplant 21:845–856

    Article  Google Scholar 

  37. Kobayashi NR, Fan DP, Giehl KM, Bedard AM, Wiegand SJ, Tetzlaff W (1997) BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 17:9583–9595

    CAS  PubMed  Google Scholar 

  38. Gupta SK, Mishra R, Kusum S, Spedding M, Meiri KF, Gressens P, Mani S (2009) GAP-43 is essential for the neurotrophic effects of BDNF and positive AMPA receptor modulator S18986. Cell Death Differ 16:624–637

    Article  CAS  PubMed  Google Scholar 

  39. Madinier A, Bertrand N, Mossiat C, Prigent-Tessier A, Beley A, Marie C, Garnier P (2009) Microglial involvement in neuroplastic changes following focal brain ischemia in rats. PLoS One 4:e8101

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cai D, Shen Y, De Bellard M, Tang S, Filbin MT (1999) Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22:89–101

    Article  CAS  PubMed  Google Scholar 

  41. Spencer TK, Mellado W, Filbin MT (2008) BDNF activates CaMKIV and PKA in parallel to block MAG-mediated inhibition of neurite outgrowth. Mol Cell Neurosci 38:110–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nikulina E, Tidwell JL, Dai HN, Bregman BS, Filbin MT. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc Natl Acad Sci U S A 101:8786–90.

  43. Dong JM, Leung T, Manser E, Lim L (1998) cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROK alpha. J Biol Chem 273:22554–62

    Article  CAS  PubMed  Google Scholar 

  44. Ahmed Z, Berry M, Logan A (2009) ROCK inhibition promotes adult retinal ganglion cell neurite outgrowth only in the presence of growth promoting factors. Mol Cell Neurosci 42:128–33

    Article  CAS  PubMed  Google Scholar 

  45. Liebermann DA, Hoffman B (2007) Gadd45 in the response of hematopoietic cells to genotoxic stress. Blood Cells Mol Dis 39:344–347

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhu RL, Graham SH, Jin J, Stetler RA, Simon RP, Chen J (1997) Kainate induces the expression of the DNA damageinducible gene, GADD45, in the rat brain. Neuroscience 81:707–20

    Article  CAS  PubMed  Google Scholar 

  47. Chen J, Uchimura K, Stetler RA, Zhu RL, Nakayama M, Jin K, Graham SH, Simon RP (1998) Transient global ischemia triggers expression of the DNA damage-inducible gene GADD45 in the rat brain. J Cereb Blood Flow Metab 18:646–57

    Article  CAS  PubMed  Google Scholar 

  48. Gavin DP, Sharma RP, Chase KA, Matrisciano F, Dong E, Guidotti A (2012) Growth arrest and DNA-damage-inducible, beta (GADD45b)-mediated DNA demethylation in major psychosis. Neuropsychopharmacology 37:531–42

    Article  CAS  PubMed  Google Scholar 

Download references

Sources of Funding

This work was supported by the Natural Science Foundation of China (Grant No. 81271306) and the Medical Science Research Project of Chongqing Municipal Health Bureau (2012-1-037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-qing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Li, Ll., Tan, Xd. et al. Gadd45b Mediates Axonal Plasticity and Subsequent Functional Recovery After Experimental Stroke in Rats. Mol Neurobiol 52, 1245–1256 (2015). https://doi.org/10.1007/s12035-014-8909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8909-0

Keywords

Navigation