Skip to main content

Advertisement

Log in

Synaptic Pathophysiology and Treatment of Lambert-Eaton Myasthenic Syndrome

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disease that disrupts the normally reliable neurotransmission at the neuromuscular junction (NMJ). This disruption is thought to result from an autoantibody-mediated removal of a subset of the P/Q-type Ca2+ channels involved with neurotransmitter release. With less neurotransmitter release at the NMJ, LEMS patients experience debilitating muscle weakness. The underlying cause of LEMS in slightly more than half of all patients is small cell lung cancer, and cancer therapy is the priority for these patients. In the remaining cases, the cause of LEMS is unknown, and these patients often rely on symptomatic treatment options, as there is no cure. However, current symptomatic treatment options, such as 3,4-diaminopyridine (3,4-DAP), can have significant dose-limiting side effects; thus, additional treatment approaches would benefit LEMS patients. Recent studies introduced a novel Ca2+ channel agonist (GV-58) as a potential therapeutic alternative for LEMS. Additionally, this work has shown that GV-58 and 3,4-DAP interact in a supra-additive manner to completely restore the magnitude of neurotransmitter release at the NMJs of a LEMS mouse model. In this review, we discuss synaptic mechanisms for reliability at the NMJ and how these mechanisms are disrupted in LEMS. We then discuss the current treatment options for LEMS patients, while also considering recent work demonstrating the therapeutic potential of GV-58 alone and in combination with 3,4-DAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhai RG, Bellen HJ (2004) The architecture of the active zone in the presynaptic nerve terminal. Physiology (Bethesda) 19:262–270

    Article  Google Scholar 

  2. Wood SJ, Slater CR (2001) Safety factor at the neuromuscular junction. Prog Neurobiol 64:393–429

    Article  CAS  PubMed  Google Scholar 

  3. Lambert EH, Eaton LM, Rooke ED (1956) Defect of neuromuscular conduction associated with malignant neoplasms. Am J Physiol 187:612–613

    Google Scholar 

  4. Vincent A, Lang B, Newsom-Davis J (1989) Autoimmunity to the voltage-gated calcium channel underlies the Lambert-Eaton myasthenic syndrome, a paraneoplastic disorder. Trends Neurosci 12:496–502

    Article  CAS  PubMed  Google Scholar 

  5. Meriney SD, Hulsizer SC, Lennon VA, Grinnell AD (1996) Lambert-Eaton myasthenic syndrome immunoglobulins react with multiple types of calcium channels in small-cell lung carcinoma. Ann Neurol 40:739–749

    Article  CAS  PubMed  Google Scholar 

  6. O'Neill JH, Murray NM, Newsom-Davis J (1988) The Lambert-Eaton myasthenic syndrome. A review of 50 cases. Brain 111:577–596

    Article  PubMed  Google Scholar 

  7. Maddison P (2012) Treatment in Lambert-Eaton myasthenic syndrome. Ann N Y Acad Sci 1275:78–84

    Article  CAS  PubMed  Google Scholar 

  8. van Sonderen A, Wirtz PW, Verschuuren JJ, Titulaer MJ (2013) Paraneoplastic syndromes of the neuromuscular junction: therapeutic options in myasthenia gravis, Lambert-Eaton myasthenic syndrome, and neuromyotonia. Curr Treat Options Neurol 15:224–239

    Article  PubMed  Google Scholar 

  9. Katz B (1969) The release of neural transmitter substances. Liverpool Univ, Press, Liverpool

    Google Scholar 

  10. Hennig R, Lomo T (1985) Firing patterns of motor units in normal rats. Nature 314:164–166

    Article  CAS  PubMed  Google Scholar 

  11. Nagwaney S, Harlow ML, Jung JH, Szule JA, Ress D, Xu J, Marshall RM, McMahan UJ (2009) Macromolecular connections of active zone material to docked synaptic vesicles and presynaptic membrane at neuromuscular junctions of mouse. J Comp Neurol 513:457–468

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fukunaga H, Engel AG, Lang B, Newsom-Davis J, Vincent A (1983) Passive transfer of Lambert-Eaton myasthenic syndrome with IgG from man to mouse depletes the presynaptic membrane active zones. Proc Natl Acad Sci U S A 80:7636–7640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ruiz R, Cano R, Casanas JJ, Gaffield MA, Betz WJ, Tabares L (2011) Active zones and the readily releasable pool of synaptic vesicles at the neuromuscular junction of the mouse. J Neurosci 31:2000–2008

    Article  CAS  PubMed  Google Scholar 

  14. Chen J, Mizushige T, Nishimune H (2012) Active zone density is conserved during synaptic growth but impaired in aged mice. J Comp Neurol 520:434–452

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tarr TB, Malick W, Liang M, Valdomir G, Frasso M, Lacomis D, Reddel SW, Garcia-Ocano A, Wipf P, Meriney SD (2013) Evaluation of a novel calcium channel agonist for therapeutic potential in Lambert-Eaton myasthenic syndrome. J Neurosci 33:10559–10567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tarr TB, Dittrich M, Meriney SD (2013) Are unreliable release mechanisms conserved from NMJ to CNS? Trends Neurosci 36:14–22

    Article  CAS  PubMed  Google Scholar 

  17. Meriney SD, Dittrich M (2013) Organization and function of transmitter release sites at the neuromuscular junction. J Physiol 591:3159–3165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo F, Dittrich M, Stiles JR, Meriney SD (2011) Single-pixel optical fluctuation analysis of calcium channel function in active zones of motor nerve terminals. J Neurosci 31:11268–11281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wirtz PW, Nijnuis MG, Sotodeh M, Willems LN, Brahim JJ, Putter H, Wintzen AR, Verschuuren JJ, Dutch Myasthenia Study G (2003) The epidemiology of myasthenia gravis, Lambert-Eaton myasthenic syndrome and their associated tumours in the northern part of the province of South Holland. J Neurol 250:698–701

    Article  PubMed  Google Scholar 

  20. Titulaer MJ, Maddison P, Sont JK, Wirtz PW, Hilton-Jones D, Klooster R, Willcox N, Potman M, Sillevis Smitt PA, Kuks JB, Roep BO, Vincent A, van der Maarel SM, van Dijk JG, Lang B, Verschuuren JJ (2011) Clinical Dutch-English Lambert-Eaton myasthenic syndrome (LEMS) tumor association prediction score accurately predicts small-cell lung cancer in the LEMS. J Clin Oncol 29:902–908

    Article  PubMed  Google Scholar 

  21. Titulaer MJ, Verschuuren JJ (2008) Lambert-Eaton myasthenic syndrome: tumor versus nontumor forms. Ann N Y Acad Sci 1132:129–134

    Article  PubMed  Google Scholar 

  22. Titulaer MJ, Lang B, Verschuuren JJ (2011) Lambert-Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurol 10:1098–1107

    Article  PubMed  Google Scholar 

  23. Lennon VA, Kryzer TJ, Griesmann GE, O'Suilleabhain PE, Windebank AJ, Woppmann A, Miljanich GP, Lambert EH (1995) Calcium-channel antibodies in the Lambert-Eaton syndrome and other paraneoplastic syndromes. N Engl J Med 332:1467–1474

    Article  CAS  PubMed  Google Scholar 

  24. Roberts A, Perera S, Lang B, Vincent A, Newsom-Davis J (1985) Paraneoplastic myasthenic syndrome IgG inhibits 45Ca2+ flux in a human small cell carcinoma line. Nature 317:737–739

    Article  CAS  PubMed  Google Scholar 

  25. Flink MT, Atchison WD (2002) Passive transfer of Lambert-Eaton syndrome to mice induces dihydropyridine sensitivity of neuromuscular transmission. J Physiol 543:567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oh SJ, Hatanaka Y, Claussen GC, Sher E (2007) Electrophysiological differences in seropositive and seronegative Lambert-Eaton myasthenic syndrome. Muscle Nerve 35:178–183

    Article  PubMed  Google Scholar 

  27. Smith DO, Conklin MW, Jensen PJ, Atchison WD (1995) Decreased calcium currents in motor nerve terminals of mice with Lambert-Eaton myasthenic syndrome. J Physiol 487:115–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Urbano FJ, Piedras-Renteria ES, Jun K, Shin HS, Uchitel OD, Tsien RW (2003) Altered properties of quantal neurotransmitter release at endplates of mice lacking P/Q-type Ca2+ channels. Proc Natl Acad Sci U S A 100:3491–3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nishimune H, Sanes JR, Carlson SS (2004) A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 432:580–587

    Article  CAS  PubMed  Google Scholar 

  30. Chen J, Billings SE, Nishimune H (2011) Calcium channels link the muscle-derived synapse organizer laminin beta2 to Bassoon and CAST/Erc2 to organize presynaptic active zones. J Neurosci 31:512–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Holderith N, Lorincz A, Katona G, Rozsa B, Kulik A, Watanabe M, Nusser Z (2012) Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 15:988–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sheng J, He L, Zheng H, Xue L, Luo F, Shin W, Sun T, Kuner T, Yue DT, Wu LG (2012) Calcium-channel number critically influences synaptic strength and plasticity at the active zone. Nat Neurosci 15:998–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tom Dieck S, Specht D, Strenzke N, Hida Y, Krishnamoorthy V, Schmidt KF, Inoue E, Ishizaki H, Tanaka-Okamoto M, Miyoshi J, Hagiwara A, Brandstatter JH, Lowel S, Gollisch T, Ohtsuka T, Moser T (2012) Deletion of the presynaptic scaffold CAST reduces active zone size in rod photoreceptors and impairs visual processing. J Neurosci 32:12192–12203

    Article  PubMed  Google Scholar 

  34. Shahidullah M, Le Marchand SJ, Fei H, Zhang J, Pandey UB, Dalva MB, Pasinelli P, Levitan IB (2013) Defects in synapse structure and function precede motor neuron degeneration in Drosophila models of FUS-related ALS. J Neurosci 33:19590–19598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnston I, Lang B, Leys K, Newsom-Davis J (1994) Heterogeneity of calcium channel autoantibodies detected using a small-cell lung cancer line derived from a Lambert-Eaton myasthenic syndrome patient. Neurology 44:334–338

    Article  CAS  PubMed  Google Scholar 

  36. Motomura M, Lang B, Johnston I, Palace J, Vincent A, Newsom-Davis J (1997) Incidence of serum anti-P/O-type and anti-N-type calcium channel autoantibodies in the Lambert-Eaton myasthenic syndrome. J Neurol Sci 147:35–42

    Article  CAS  PubMed  Google Scholar 

  37. Waterman SA, Lang B, Newsom-Davis J (1997) Effect of Lambert-Eaton myasthenic syndrome antibodies on autonomic neurons in the mouse. Ann Neurol 42:147–156

    Article  CAS  PubMed  Google Scholar 

  38. Takamori M (2008) Lambert–Eaton myasthenic syndrome: search for alternative autoimmune targets and possible compensatory mechanisms based on presynaptic calcium homeostasis. J Neuroimmunol 201–202:145–152

    Article  PubMed  Google Scholar 

  39. Südhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80:675–690

    Article  PubMed  Google Scholar 

  40. Santafe MM, Lanuza MA, Garcia N, Tomas J (2006) Muscarinic autoreceptors modulate transmitter release through protein kinase C and protein kinase A in the rat motor nerve terminal. Eur J Neurosci 23:2048–2056

    Article  PubMed  Google Scholar 

  41. Nakao YK, Motomura M, Fukudome T, Fukuda T, Shiraishi H, Yoshimura T, Tsujihata M, Eguchi K (2002) Seronegative Lambert-Eaton myasthenic syndrome: study of 110 Japanese patients. Neurology 59:1773–1775

    Article  CAS  PubMed  Google Scholar 

  42. O'Suilleabhain P, Low PA, Lennon VA (1998) Autonomic dysfunction in the Lambert-Eaton myasthenic syndrome: serologic and clinical correlates. Neurology 50:88–93

    Article  PubMed  Google Scholar 

  43. Literature review of the usefulness of repetitive nerve stimulation and single fiber EMG in the electrodiagnostic evaluation of patients with suspected myasthenia gravis or Lambert-Eaton myasthenic syndrome (2001) Muscle Nerve 24:1239–1247

  44. Oh SJ, Kurokawa K, Claussen GC, Ryan HF Jr (2005) Electrophysiological diagnostic criteria of Lambert-Eaton myasthenic syndrome. Muscle Nerve 32:515–520

    Article  PubMed  Google Scholar 

  45. Mason WP, Graus F, Lang B, Honnorat J, Delattre JY, Valldeoriola F, Antoine JC, Rosenblum MK, Rosenfeld MR, Newsom-Davis J, Posner JB, Dalmau J (1997) Small-cell lung cancer, paraneoplastic cerebellar degeneration and the Lambert-Eaton myasthenic syndrome. Brain 120:1279–1300

    Article  PubMed  Google Scholar 

  46. Wang S, Bruzzi J, Rodriguez-Garza VP, Komaki RR (2006) Lambert-eaton myasthenic syndrome in a patient with small-cell lung cancer. Clin Lung Cancer 7:282–284

    Article  PubMed  Google Scholar 

  47. Lindquist S, Stangel M (2011) Update on treatment options for Lambert-Eaton myasthenic syndrome: focus on use of amifampridine. Neuropsychiatr Dis Treat 7:341–349

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Verschuuren JJ, Wirtz PW, Titulaer MJ, Willems LN, van Gerven J (2006) Available treatment options for the management of Lambert-Eaton myasthenic syndrome. Expert Opin Pharmacother 7:1323–1336

    Article  CAS  PubMed  Google Scholar 

  49. Keogh M, Sedehizadeh S, Maddison P (2011) Treatment for Lambert-Eaton myasthenic syndrome. Cochrane Database Syst Rev 2, CD003279

    Google Scholar 

  50. Kirsch GE, Narahashi T (1978) 3,4-diaminopyridine. A potent new potassium channel blocker. Biophys J 22:507–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sedehizadeh S, Keogh M, Maddison P (2012) The use of aminopyridines in neurological disorders. Clin Neuropharmacol 35:191–200

    Article  CAS  PubMed  Google Scholar 

  52. Wirtz PW, Verschuuren JJ, van Dijk JG, de Kam ML, Schoemaker RC, van Hasselt JG, Titulaer MJ, Tjaden UR, den Hartigh J, van Gerven JM (2009) Efficacy of 3,4-diaminopyridine and pyridostigmine in the treatment of Lambert-Eaton myasthenic syndrome: a randomized, double-blind, placebo-controlled, crossover study. Clin Pharmacol Ther 86:44–48

    Article  CAS  PubMed  Google Scholar 

  53. Oh SJ, Claussen GG, Hatanaka Y, Morgan MB (2009) Diaminopyridine is more effective than placebo in a randomized, double-blind, cross-over drug study in LEMS. Muscle Nerve 40:795–800

    Article  CAS  PubMed  Google Scholar 

  54. Sanders DB, Massey JM, Sanders LL, Edwards LJ (2000) A randomized trial of 3,4-diaminopyridine in Lambert-Eaton myasthenic syndrome. Neurology 54:603–607

    Article  CAS  PubMed  Google Scholar 

  55. Miralles F, Solsona C (1998) 3,4-Diaminopyridine-induced impairment in frog motor nerve terminal response to high frequency stimulation. Brain Res 789:239–244

    Article  CAS  PubMed  Google Scholar 

  56. Thomsen RH, Wilson DF (1983) Effects of 4-aminopyridine and 3,4-diaminopyridine on transmitter release at the neuromuscular junction. J Pharmacol Exp Ther 227:260–265

    CAS  PubMed  Google Scholar 

  57. Newsom-Davis J, Murray NM (1984) Plasma exchange and immunosuppressive drug treatment in the Lambert-Eaton myasthenic syndrome. Neurology 34:480–485

    Article  CAS  PubMed  Google Scholar 

  58. Maddison P, Lang B, Mills K, Newsom-Davis J (2001) Long term outcome in Lambert-Eaton myasthenic syndrome without lung cancer. J Neurol Neurosurg Psychiatry 70:212–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Palace J, Newsom-Davis J, Lecky B (1998) A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis. Myasthenia Gravis Study Group. Neurology 50:1778–1783

    Article  CAS  PubMed  Google Scholar 

  60. Tim RW, Massey JM, Sanders DB (1998) Lambert-Eaton myasthenic syndrome (LEMS). Clinical and electrodiagnostic features and response to therapy in 59 patients. Ann N Y Acad Sci 841:823–826

    Article  CAS  PubMed  Google Scholar 

  61. Tim RW, Massey JM, Sanders DB (2000) Lambert-Eaton myasthenic syndrome: electrodiagnostic findings and response to treatment. Neurology 54:2176–2178

    Article  CAS  PubMed  Google Scholar 

  62. Bain PG, Motomura M, Newsom-Davis J, Misbah SA, Chapel HM, Lee ML, Vincent A, Lang B (1996) Effects of intravenous immunoglobulin on muscle weakness and calcium-channel autoantibodies in the Lambert-Eaton myasthenic syndrome. Neurology 47:678–683

    Article  CAS  PubMed  Google Scholar 

  63. Bird SJ (1992) Clinical and electrophysiologic improvement in Lambert-Eaton syndrome with intravenous immunoglobulin therapy. Neurology 42:1422–1423

    Article  CAS  PubMed  Google Scholar 

  64. Takano H, Tanaka M, Koike R, Nagai H, Arakawa M, Tsuji S (1994) Effect of intravenous immunoglobulin in Lambert-Eaton myasthenic syndrome with small-cell lung cancer: correlation with the titer of anti-voltage-gated calcium channel antibody. Muscle Nerve 17:1073–1075

    Article  CAS  PubMed  Google Scholar 

  65. Muchnik S, Losavio AS, Vidal A, Cura L, Mazia C (1997) Long-term follow-up of Lambert-Eaton syndrome treated with intravenous immunoglobulin. Muscle Nerve 20:674–678

    Article  CAS  PubMed  Google Scholar 

  66. Antoine JC, Camdessanche JP (2013) Treatment options in paraneoplastic disorders of the peripheral nervous system. Curr Treat Options Neurol 15:210–223

    Article  PubMed  Google Scholar 

  67. Liang M, Tarr TB, Bravo-Altamirano K, Valdomir G, Rensch G, Swanson L, DeStefino NR, Mazzarisi CM, Olszewski RA, Wilson GM, Meriney SD, Wipf P (2012) Synthesis and biological evaluation of a selective N- and P/Q-type calcium channel agonist. ACS Med Chem Lett 3:985–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yan Z, Chi P, Bibb JA, Ryan TA, Greengard P (2002) Roscovitine: a novel regulator of P/Q-type calcium channels and transmitter release in central neurons. J Physiol 540:761–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. DeStefino NR, Pilato AA, Dittrich M, Cherry SV, Cho S, Stiles JR, Meriney SD (2010) (R)-roscovitine prolongs the mean open time of unitary N-type calcium channel currents. Neuroscience 167:838–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tarr TB, Lacomis D, Reddel SW, Liang M, Valdomir G, Frasso M, Wipf P, Meriney SD (2014) Complete reversal of Lambert-Eaton myasthenic syndrome synaptic impairment by the combined use of a K channel blocker and a Ca2+ channel agonist. J Physiol 592:3687–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dorlochter M, Irintchev A, Brinkers M, Wernig A (1991) Effects of enhanced activity on synaptic transmission in mouse extensor digitorum longus muscle. J Physiol 436:283–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kong L, Wang X, Choe DW, Polley M, Burnett BG, Bosch-Marce M, Griffin JW, Rich MM, Sumner CJ (2009) Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J Neurosci 29:842–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank A.E. Homan for critically reading the manuscript. This work was supported by the ARCS Foundation scholarship (to T.B.T.) and grants from the National Science Foundation (0844604 and 1249546 to S.D.M.), the National Institutes of Health (GM067082 to P.W.), the Muscular Dystrophy Association (295271 to S.D.M.), and the University of Pittsburgh Central Research Development Fund (to S.D.M.).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Meriney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarr, T.B., Wipf, P. & Meriney, S.D. Synaptic Pathophysiology and Treatment of Lambert-Eaton Myasthenic Syndrome. Mol Neurobiol 52, 456–463 (2015). https://doi.org/10.1007/s12035-014-8887-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8887-2

Keywords

Navigation