Skip to main content

Advertisement

Log in

Stem Cells in Neurological Disorders: Emerging Therapy with Stunning Hopes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases are still a challenge for researchers and clinicians due to its complexity. Traditional medicines usually do not provide sufficient protection against these diseases due to drug resistance and relapse. The discovery of the therapeutic potential of stem cells offers new opportunities for the treatment of incurable neurological diseases. Based on their biological properties, stem cells can differentiate into specific tissue type and maintain the cellular tissue/organ homeostasis in physiological and pathological conditions. Recently, it has been demonstrated that somatic cells of patients can be reprogrammed to a pluripotent state from which neural lineage cells can be derived. Potential strategies such as cell replacement therapy and gene transfer to the diseased or injured brain have opened a new line of therapeutic approach for a broad spectrum of human neurological diseases. Thus, stem cell replacement therapy for central and peripheral nervous system disorders aims at repopulating the affected neural tissue with new neurons. However, the limiting factors that have hampered the development of this promising therapeutic approach are the lack of suitable cell types for cell replacement therapy in patients suffering from neurological disorders. In this review, we have discussed the recent advances in stem cell replacement therapy with particular emphasis to neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DA:

Dopaminergic

ESCs:

Embryonic stem cells

iPSCs:

Induced pluripotent stem cells

iPS cells:

Induced pluripotent stem cells

ADSCs:

Adipose-derived stromal cells

BM-MSCs:

Bone marrow-derived mesenchymal stem cells

NSCs:

Neural stem cells

NGF:

Nerve growth factor

BDNF:

Brain-derived growth factor

Oct4:

Octamer-binding transcription factor 4

Mbd3:

Methyl-CpG-binding domain protein 3

NuRD:

Nucleosome remodeling and deacetylase

Ascl1:

Achaete-scute complex homolog 1

Brn2:

Brain-2

Myt1l:

Myelin transcription factor 1-like

NeuroD:

Neuronal differentiation

OLIG2:

Oligodendrocyte lineage transcription factor 2

Zic1:

Zinc finger protein of the cerebellum 1

miR-9/9*:

Bifunctional microRNA strands 9

miR-124:

MicroRNA 124

Lmx1a:

LIM homeobox transcription factor 1 alpha

Nurr1:

Nuclear receptor related 1

Pitx3:

Paired-like homeodomain 3

Foxa2:

Forkhead box A2

EN1:

Engrailed homeobox 1

Lhx3:

LIM homeobox 3

Hb9:

Homeobox 9

Isl1:

Islet 1 (ISL LIM homeobox 1)

Ngn2:

Neurogenin 2

Sox2:

Sex determining region Y box 2

Klf4:

Krüppel-like factor 4

c-Myc:

v-Myc avian myelocytomatosis viral oncogene homolog

E47/Tcf3:

Transcription factor 3

Aβ:

Amyloid-beta

APP:

Amyloid precursor protein

ASC:

Adult Stem Cells

BM-MSC:

Bone marrow mesenchymal stem cell

ChAT:

Choline-acetyltransferase

EPI-NCSC:

Epidermal neural crest stem cell

ES:

Embryonic stem cell

NGFR:

Nerve growth factor receptor

hNSC:

Human neural stem cell

mNSC:

Murine neural stem cell

UCB-MSC:

Umbilical cord blood mesenchymal stem cell

LRRK2:

Leucine-rich repeat kinase 2

PINK1:

PTEN-induced putative kinase 1

Fbxo7:

F-Box only protein 7

PSEN1:

Presenilin protein 1

PSEN2:

Presenilin protein 2

TREM2:

Triggering receptor expressed on myeloid cells 2

APP:

Amyloid precursor protein

SOD1:

Superoxide dismutase 1

VAPB:

Vesicle-associated membrane protein-associated protein B/C

TDP43:

TAR DNA-binding protein 43

C9ORF72:

Chromosome 9 open reading frame 72

FUS:

Fused in sarcoma

ABCG2:

ATP-binding cassette sub-family G member 2

CXCR4:

C-X-C chemokine receptor type 4

FGF R4:

Fibroblast growth factor receptor 4

Frizzled-9:

Frizzled class receptor 9

Glut1:

Glucose transporter 1

SSEA-1:

Stage-specific embryonic antigen 1

BLBP/FABP7:

Brain lipid binding protein (also fatty acid binding protein 7)

GLAST/SLC1A3:

Glutamate aspartate transporter or solute carrier family 1 (glial high-affinity glutamate transporter) member 3

GFAP:

Glial fibrillary acidic protein

S100B:

S100 calcium binding protein B

PAX6:

Paired box protein 6

TBR2:

T-box brain protein 2 or eomesodermin

FGF:

Fibroblast growth factor

Islet-1 and 2:

ISL LIM homeobox 1 and 2

Lhx3:

LIM/homeobox protein 3

Olig2:

Oligodendrocyte transcription factor

MOG:

Myelin oligodendrocyte glycoprotein

GalC:

Galactosylceramidase

NeuN:

Feminizing locus on X-3 Fox-3 Rbfox3, or hexaribonucleotide binding protein-3

NF-L:

Light neurofilament

NF-M:

Medium neurofilament

TH:

Tyrosine hydroxylase

GAD:

Glutamic acid decarboxylase

PSD-95:

Postsynaptic density protein 95

VAMP:

Vesicle-associated membrane proteins

EMT:

Mesenchymal to endothelial transition

References

  1. Patel S, Singh V, Kumar A, Gupta YK, Singh MP (2006) Status of antioxidant defense system and expression of toxicant responsive genes in striatum of maneb- and paraquat-induced Parkinson’s disease phenotype in mouse: mechanism of neurodegeneration. Brain Res 1081(1):9–18. doi:10.1016/j.brainres.2006.01.060

    Article  CAS  PubMed  Google Scholar 

  2. Ferrante RJ, Kowall NW, Beal MF, Richardson EP Jr, Bird ED, Martin JB (1985) Selective sparing of a class of striatal neurons in Huntington’s disease. Science 230(4725):561–563

    Article  CAS  PubMed  Google Scholar 

  3. Boillee S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52(1):39–59. doi:10.1016/j.neuron.2006.09.018

    Article  CAS  PubMed  Google Scholar 

  4. Rando TA, Wyss-Coray T Stem cells as vehicles for youthful regeneration of aged tissues. J Gerontol A Biol Sci Med Sci 69 Suppl 1:S39-42. doi:10.1093/gerona/glu043

  5. Orlacchio A, Bernardi G, Martino S (2010) Stem cells: an overview of the current status of therapies for central and peripheral nervous system diseases. Curr Med Chem 17(7):595–608

    Article  CAS  PubMed  Google Scholar 

  6. Sendtner M (2009) Stem cells: tailor-made diseased neurons. Nature 457(7227):269–270. doi:10.1038/457269a

    Article  CAS  PubMed  Google Scholar 

  7. Yu D, Silva GA (2008) Stem cell sources and therapeutic approaches for central nervous system and neural retinal disorders. Neurosurg Focus 24(3–4):E11. doi:10.3171/FOC/2008/24/3–4/E10

    Article  PubMed  PubMed Central  Google Scholar 

  8. Park DH, Eve DJ (2009) Regenerative medicine: advances in new methods and technologies. Med Sci Monit 15(11):RA233–251

    PubMed  Google Scholar 

  9. Galli R, Gritti A, Vescovi AL (2008) Adult neural stem cells. Methods Mol Biol 438:67–84. doi:10.1007/978–1–59745–133–8_7

    Article  CAS  PubMed  Google Scholar 

  10. Srivastava AS, Malhotra R, Sharp J, Berggren T (2008) Potentials of ES cell therapy in neurodegenerative diseases. Curr Pharm Des 14(36):3873–3879

    Article  CAS  PubMed  Google Scholar 

  11. Park IH, Lerou PH, Zhao R, Huo H, Daley GQ (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180–1186. doi:10.1038/nprot.2008.92

    Article  CAS  PubMed  Google Scholar 

  12. Conti L, Cattaneo E, Papadimou E (2008) Novel neural stem cell systems. Expert Opin Biol Ther 8(2):153–160. doi:10.1517/14712598.8.2.153

    Article  CAS  PubMed  Google Scholar 

  13. Ma DK, Bonaguidi MA, Ming GL, Song H (2009) Adult neural stem cells in the mammalian central nervous system. Cell Res 19(6):672–682. doi:10.1038/cr.2009.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders—how to make it work. Nat Med 10(Suppl):S42–50. doi:10.1038/nm1064

    Article  PubMed  CAS  Google Scholar 

  15. Rayment EA, Williams DJ (2010) Concise review: mind the gap: challenges in characterizing and quantifying cell- and tissue-based therapies for clinical translation. Stem Cells 28(5):996–1004. doi:10.1002/stem.416

    PubMed  PubMed Central  Google Scholar 

  16. Osanai T, Kuroda S, Sugiyama T, Kawabori M, Ito M, Shichinohe H, Kuge Y, Houkin K, Tamaki N, Iwasaki Y Therapeutic effects of intra-arterial delivery of bone marrow stromal cells in traumatic brain injury of rats—in vivo cell tracking study by near-infrared fluorescence imaging. Neurosurgery 70 (2):435–444; discussion 444. doi:10.1227/NEU.0b013e318230a795

  17. Baker PS, Brown GC (2009) Stem-cell therapy in retinal disease. Curr Opin Ophthalmol 20(3):175–181

    Article  PubMed  Google Scholar 

  18. Enns GM, Huhn SL (2008) Central nervous system therapy for lysosomal storage disorders. Neurosurg Focus 24(3–4):E12. doi:10.3171/FOC/2008/24/3–4/E11

    Article  PubMed  Google Scholar 

  19. Martino S, di Girolamo I, Orlacchio A, Datti A (2009) MicroRNA implications across neurodevelopment and neuropathology. J Biomed Biotechnol 2009:654346. doi:10.1155/2009/654346

    PubMed  PubMed Central  Google Scholar 

  20. Naegele JR, Maisano X, Yang J, Royston S, Ribeiro E (2010) Recent advancements in stem cell and gene therapies for neurological disorders and intractable epilepsy. Neuropharmacology 58(6):855–864. doi:10.1016/j.neuropharm.2010.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders—time for clinical translation? J Clin Invest 120(1):29–40. doi:10.1172/JCI40543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dawson E, Mapili G, Erickson K, Taqvi S, Roy K (2008) Biomaterials for stem cell differentiation. Adv Drug Deliv Rev 60(2):215–228. doi:10.1016/j.addr.2007.08.037

    Article  CAS  PubMed  Google Scholar 

  23. Atala A (2009) Engineering organs. Curr Opin Biotechnol 20(5):575–592. doi:10.1016/j.copbio.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  24. Zhong Y, Bellamkonda RV (2008) Biomaterials for the central nervous system. J R Soc Interface 5(26):957–975. doi:10.1098/rsif.2008.0071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martino S, D’Angelo F, Armentano I, Tiribuzi R, Pennacchi M, Dottori M, Mattioli S, Caraffa A, Cerulli GG, Kenny JM, Orlacchio A (2009) Hydrogenated amorphous carbon nanopatterned film designs drive human bone marrow mesenchymal stem cell cytoskeleton architecture. Tissue Eng Part A 15(10):3139–3149. doi:10.1089/ten.TEA.2008.0552

    Article  CAS  PubMed  Google Scholar 

  26. Orive G, Anitua E, Pedraz JL, Emerich DF (2009) Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 10(9):682–692. doi:10.1038/nrn2685

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi J (2007) Stem cell therapy for Parkinson’s disease. Expert Rev Neurother 7(6):667–675. doi:10.1586/14737175.7.6.667

    Article  CAS  PubMed  Google Scholar 

  29. Yu SC, Yi L, Zhou ZH, Yao XH, Ping YF, Bian XW (2007) Isolation and identification of tumor stem-like cells from human glioma cell line U87 after treatment of vincristine. Ai Zheng 26(12):1388–1391

    CAS  PubMed  Google Scholar 

  30. Yu Y, Gu S, Huang H, Wen T (2007) Combination of bFGF, heparin and laminin induce the generation of dopaminergic neurons from rat neural stem cells both in vitro and in vivo. J Neurol Sci 255(1–2):81–86. doi:10.1016/j.jns.2007.01.076

    Article  CAS  PubMed  Google Scholar 

  31. Hovakimyan M, Haas SJ, Schmitt O, Gerber B, Wree A, Andressen C (2008) Mesencephalic human neural progenitor cells transplanted into the adult hemiparkinsonian rat striatum lack dopaminergic differentiation but improve motor behavior. Cells Tissues Organs 188(4):373–383. doi:10.1159/000140680

    Article  PubMed  Google Scholar 

  32. Park HJ, Lee PH, Bang OY, Lee G, Ahn YH (2008) Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J Neurochem 107(1):141–151. doi:10.1111/j.1471–4159.2008.05589.x

    Article  CAS  PubMed  Google Scholar 

  33. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041. doi:10.1038/nature08797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marro S, Pang ZP, Yang N, Tsai MC, Qu K, Chang HY, Sudhof TC, Wernig M (2011) Direct lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell 9(4):374–382. doi:10.1016/j.stem.2011.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Sudhof TC, Wernig M (2011) Induction of human neuronal cells by defined transcription factors. Nature 476(7359):220–223. doi:10.1038/nature10202

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476(7359):228–231. doi:10.1038/nature10323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280. doi:10.1038/nature07677

    Article  CAS  PubMed  Google Scholar 

  38. Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461(7262):402–406. doi:10.1038/nature08320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108(25):10343–10348. doi:10.1073/pnas.1105135108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9(3):205–218. doi:10.1016/j.stem.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143(4):527–539. doi:10.1016/j.cell.2010.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheung AY, Horvath LM, Grafodatskaya D, Pasceri P, Weksberg R, Hotta A, Carrel L, Ellis J (2011) Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet 20(11):2103–2115. doi:10.1093/hmg/ddr093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lujan E, Chanda S, Ahlenius H, Sudhof TC, Wernig M (2012) Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A 109(7):2527–2532. doi:10.1073/pnas.1121003109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Han DW, Tapia N, Hermann A, Hemmer K, Hoing S, Arauzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S, Greber B, Yang JH, Lee HT, Schwamborn JC, Storch A, Scholer HR (2012) Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10(4):465–472. doi:10.1016/j.stem.2012.02.021

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schule B, Dolmetsch RE, Langston W, Palmer TD, Pera RR (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8(3):267–280. doi:10.1016/j.stem.2011.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D (2011) Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci 31(16):5970–5976. doi:10.1523/JNEUROSCI.4441–10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, Ding S (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9(2):113–118. doi:10.1016/j.stem.2011.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov RR, Gustincich S, Dityatev A, Broccoli V (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476(7359):224–227. doi:10.1038/nature10284

    Article  CAS  PubMed  Google Scholar 

  49. Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11(1):100–109. doi:10.1016/j.stem.2012.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hashimoto-Torii K, Torii M, Fujimoto M, Nakai A, El Fatimy R, Mezger V, Ju MJ, Ishii S, Chao SH, Brennand KJ, Gage FH, Rakic P (2014) Roles of heat shock factor 1 in neuronal response to fetal environmental risks and its relevance to brain disorders. Neuron 82(3):560–572. doi:10.1016/j.neuron.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mitne-Neto M, Machado-Costa M, Marchetto MC, Bengtson MH, Joazeiro CA, Tsuda H, Bellen HJ, Silva HC, Oliveira AS, Lazar M, Muotri AR, Zatz M (2011) Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum Mol Genet 20(18):3642–3652. doi:10.1093/hmg/ddr284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, McCarthy S, Sebat J, Gage FH (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473(7346):221–225. doi:10.1038/nature09915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim J, Su SC, Wang H, Cheng AW, Cassady JP, Lodato MA, Lengner CJ, Chung CY, Dawlaty MM, Tsai LH, Jaenisch R (2011) Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell 9(5):413–419. doi:10.1016/j.stem.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S, Mansour AA, Caspi I, Krupalnik V, Zerbib M, Maza I, Mor N, Baran D, Weinberger L, Jaitin DA, Lara-Astiaso D, Blecher-Gonen R, Shipony Z, Mukamel Z, Hagai T, Gilad S, Amann-Zalcenstein D, Tanay A, Amit I, Novershtern N, Hanna JH Deterministic direct reprogramming of somatic cells to pluripotency. Nature 502 (7469):65–70. doi:10.1038/nature1258

  55. Salewski RP, Eftekharpour E, Fehlings MG (2010) Are induced pluripotent stem cells the future of cell-based regenerative therapies for spinal cord injury? J Cell Physiol 222(3):515–521. doi:10.1002/jcp.21995

    CAS  PubMed  Google Scholar 

  56. Kiskinis E, Eggan K (2010) Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest 120(1):51–59. doi:10.1172/JCI40553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang ZG, Chopp M (2009) Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 8(5):491–500. doi:10.1016/S1474–4422(09)70061–4

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li JY, Christophersen NS, Hall V, Soulet D, Brundin P (2008) Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci 31(3):146–153. doi:10.1016/j.tins.2007.12.001

    Article  PubMed  CAS  Google Scholar 

  59. Bachoud-Levi AC, Gaura V, Brugieres P, Lefaucheur JP, Boisse MF, Maison P, Baudic S, Ribeiro MJ, Bourdet C, Remy P, Cesaro P, Hantraye P, Peschanski M (2006) Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 5(4):303–309. doi:10.1016/S1474–4422(06)70381–7

    Article  PubMed  Google Scholar 

  60. Deda H, Inci MC, Kurekci AE, Sav A, Kayihan K, Ozgun E, Ustunsoy GE, Kocabay S (2009) Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1 year follow-up. Cytotherapy 11(1):18–25. doi:10.1080/14653240802549470

    Article  CAS  PubMed  Google Scholar 

  61. Appel SH, Engelhardt JI, Henkel JS, Siklos L, Beers DR, Yen AA, Simpson EP, Luo Y, Carrum G, Heslop HE, Brenner MK, Popat U (2008) Hematopoietic stem cell transplantation in patients with sporadic amyotrophic lateral sclerosis. Neurology 71(17):1326–1334. doi:10.1212/01.wnl.0000327668.43541.22

    Article  CAS  PubMed  Google Scholar 

  62. Akesson E, Sandelin M, Kanaykina N, Aldskogius H, Kozlova EN (2008) Long-term survival, robust neuronal differentiation, and extensive migration of human forebrain stem/progenitor cells transplanted to the adult rat dorsal root ganglion cavity. Cell Transplant 17(10–11):1115–1123

    Article  Google Scholar 

  63. Biffi A, Lucchini G, Rovelli A, Sessa M (2008) Metachromatic leukodystrophy: an overview of current and prospective treatments. Bone Marrow Transplant 42(Suppl 2):S2–6. doi:10.1038/bmt.2008.275

    Article  PubMed  Google Scholar 

  64. Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441(7097):1094–1096. doi:10.1038/nature04960

    Article  CAS  PubMed  Google Scholar 

  65. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A 105(15):5856–5861. doi:10.1073/pnas.0801677105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cai J, Yang M, Poremsky E, Kidd S, Schneider JS, Iacovitti L Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev 19 (7):1017–1023. doi:10.1089/scd.2009.0319

  67. Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ, Osborn T, Jaenisch R, Isacson O Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in parkinsonian rats. Proc Natl Acad Sci U S A 107 (36):15921–15926. doi:10.1073/pnas.1010209107

  68. Jonsson ME, Ono Y, Bjorklund A, Thompson LH (2009) Identification of transplantable dopamine neuron precursors at different stages of midbrain neurogenesis. Exp Neurol 219(1):341–354. doi:10.1016/j.expneurol.2009.06.006

    Article  PubMed  CAS  Google Scholar 

  69. Rodriguez-Gomez JA, Lu JQ, Velasco I, Rivera S, Zoghbi SS, Liow JS, Musachio JL, Chin FT, Toyama H, Seidel J, Green MV, Thanos PK, Ichise M, Pike VW, Innis RB, McKay RD (2007) Persistent dopamine functions of neurons derived from embryonic stem cells in a rodent model of Parkinson disease. Stem Cells 25(4):918–928. doi:10.1634/stemcells.2006–0386

    Article  CAS  PubMed  Google Scholar 

  70. Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12(11):1259–1268. doi:10.1038/nm1495

    Article  CAS  PubMed  Google Scholar 

  71. Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim DS, Kang SM, Lee H, Kim MH, Kim JH, Leem JW, Oh SK, Choi YM, Hwang DY, Chang JW, Kim DW (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 105(9):3392–3397. doi:10.1073/pnas.0712359105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ben-Hur T, Idelson M, Khaner H, Pera M, Reinhartz E, Itzik A, Reubinoff BE (2004) Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in parkinsonian rats. Stem Cells 22(7):1246–1255. doi:10.1634/stemcells.2004–0094

    Article  PubMed  Google Scholar 

  73. Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418(6893):50–56. doi:10.1038/nature00900

    Article  CAS  PubMed  Google Scholar 

  74. Nishimura F, Yoshikawa M, Kanda S, Nonaka M, Yokota H, Shiroi A, Nakase H, Hirabayashi H, Ouji Y, Birumachi J, Ishizaka S, Sakaki T (2003) Potential use of embryonic stem cells for the treatment of mouse parkinsonian models: improved behavior by transplantation of in vitro differentiated dopaminergic neurons from embryonic stem cells. Stem Cells 21(2):171–180. doi:10.1634/stemcells.21–2–171

    Article  PubMed  Google Scholar 

  75. Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K, Perrier AL, Bruses J, Rubio ME, Topf N, Tabar V, Harrison NL, Beal MF, Moore MA, Studer L (2003) Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 21(10):1200–1207. doi:10.1038/nbt870

    Article  CAS  PubMed  Google Scholar 

  76. Tabar V, Tomishima M, Panagiotakos G, Wakayama S, Menon J, Chan B, Mizutani E, Al-Shamy G, Ohta H, Wakayama T, Studer L (2008) Therapeutic cloning in individual parkinsonian mice. Nat Med 14(4):379–381. doi:10.1038/nm1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Villaescusa JC, Arenas E (2010) Transplantable midbrain dopamine neurons: a moving target. Exp Neurol 222(2):173–178. doi:10.1016/j.expneurol.2009.12.028

    Article  PubMed  Google Scholar 

  78. Brundin P, Strecker RE, Lindvall O, Isacson O, Nilsson OG, Barbin G, Prochiantz A, Forni C, Nieoullon A, Widner H et al (1987) Intracerebral grafting of dopamine neurons. Experimental basis for clinical trials in patients with Parkinson’s disease. Ann N Y Acad Sci 495:473–496

    Article  CAS  PubMed  Google Scholar 

  79. Nishimura K, Takahashi J Therapeutic application of stem cell technology toward the treatment of Parkinson’s disease. Biol Pharm Bull 36 (2):171–175

  80. Tarazi FI, Sahli ZT, Wolny M, Mousa SA Emerging therapies for Parkinson’s disease: from bench to bedside. Pharmacol Ther. doi:10.1016/j.pharmthera.2014.05.010

  81. Mendez I, Sanchez-Pernaute R, Cooper O, Vinuela A, Ferrari D, Bjorklund L, Dagher A, Isacson O (2005) Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 128(Pt 7):1498–1510. doi:10.1093/brain/awh510

    Article  PubMed  PubMed Central  Google Scholar 

  82. Geraerts M, Krylyshkina O, Debyser Z, Baekelandt V (2007) Concise review: therapeutic strategies for Parkinson disease based on the modulation of adult neurogenesis. Stem Cells 25(2):263–270. doi:10.1634/stemcells.2006–0364

    Article  CAS  PubMed  Google Scholar 

  83. Friling S, Andersson E, Thompson LH, Jonsson ME, Hebsgaard JB, Nanou E, Alekseenko Z, Marklund U, Kjellander S, Volakakis N, Hovatta O, El Manira A, Bjorklund A, Perlmann T, Ericson J (2009) Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proc Natl Acad Sci U S A 106(18):7613–7618. doi:10.1073/pnas.0902396106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hallett M, Litvan I (1999) Evaluation of surgery for Parkinson’s disease: a report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. The Task Force on Surgery for Parkinson’s Disease. Neurology 53(9):1910–1921

    Article  CAS  PubMed  Google Scholar 

  85. Hallett M, Litvan I (2000) Scientific position paper of the Movement Disorder Society evaluation of surgery for Parkinson’s disease. Task Force on Surgery for Parkinson’s Disease of the American Academy of Neurology Therapeutic and Technology Assessment Committee. Mov Disord 15(3):436–438

    Article  CAS  PubMed  Google Scholar 

  86. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344(10):710–719. doi:10.1056/NEJM200103083441002

    Article  CAS  PubMed  Google Scholar 

  87. Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54(3):403–414. doi:10.1002/ana.10720

    Article  PubMed  Google Scholar 

  88. Bjorklund A, Dunnett SB, Brundin P, Stoessl AJ, Freed CR, Breeze RE, Levivier M, Peschanski M, Studer L, Barker R (2003) Neural transplantation for the treatment of Parkinson’s disease. Lancet Neurol 2(7):437–445

    Article  PubMed  Google Scholar 

  89. Freed CR, Leehey MA, Zawada M, Bjugstad K, Thompson L, Breeze RE (2003) Do patients with Parkinson’s disease benefit from embryonic dopamine cell transplantation? J Neurol 250(Suppl 3):III44–46. doi:10.1007/s00415–003–1308–5

    PubMed  Google Scholar 

  90. Freed CR, Breeze RE, Fahn S, Eidelberg D (2004) Preoperative response to levodopa is the best predictor of transplant outcome. Ann Neurol 55 (6):896; author reply 896–897. doi:10.1002/ana.20085

  91. Byers B, Cord B, Nguyen HN, Schule B, Fenno L, Lee PC, Deisseroth K, Langston JW, Pera RR, Palmer TD (2011) SNCA triplication Parkinson’s patient’s iPSC-derived DA neurons accumulate alpha-synuclein and are susceptible to oxidative stress. PLoS One 6(11):e26159. doi:10.1371/journal.pone.0026159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Sagal J, Zhan X, Xu J, Tilghman J, Karuppagounder SS, Chen L, Dawson VL, Dawson TM, Laterra J, Ying M Proneural transcription factor Atoh1 drives highly efficient differentiation of human pluripotent stem cells into dopaminergic neurons. Stem Cells Transl Med. doi:10.5966/sctm.2013–0213

  93. Thies W, Bleiler L, Alzheimer’s A (2013) 2013 Alzheimer’s disease facts and figures. Alzheimers Dement 9(2):208–245. doi:10.1016/j.jalz.2013.02.003

    Article  Google Scholar 

  94. Gurav AN (2014) Alzheimer’s disease and periodontitis—an elusive link. Rev Assoc Med Bras 60(2):173–180

    Article  PubMed  Google Scholar 

  95. Hansen N (2014) Brain stimulation for combating Alzheimer’s disease. Front Neurol 5:80. doi:10.3389/fneur.2014.00080

    Article  PubMed  PubMed Central  Google Scholar 

  96. Babaei P, Soltani Tehrani B, Alizadeh A Transplanted bone marrow mesenchymal stem cells improve memory in rat models of Alzheimer’s disease. Stem Cells Int 2012:369417. doi:10.1155/2012/369417

  97. Lee JK, Jin HK, Bae JS (2009) Bone marrow-derived mesenchymal stem cells reduce brain amyloid-beta deposition and accelerate the activation of microglia in an acutely induced Alzheimer’s disease mouse model. Neurosci Lett 450(2):136–141. doi:10.1016/j.neulet.2008.11.059

    Article  CAS  PubMed  Google Scholar 

  98. Park D, Lee HJ, Joo SS, Bae DK, Yang G, Yang YH, Lim I, Matsuo A, Tooyama I, Kim YB, Kim SU Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction. Exp Neurol 234 (2):521–526. doi:10.1016/j.expneurol.2011.12.040

  99. Park DH, Eve DJ, Sanberg PR, Musso J, 3rd, Bachstetter AD, Wolfson A, Schlunk A, Baradez MO, Sinden JD, Gemma C Increased neuronal proliferation in the dentate gyrus of aged rats following neural stem cell implantation. Stem Cells Dev 19 (2):175–180. doi:10.1089/scd.2009.0172

  100. Qu T, Brannen CL, Kim HM, Sugaya K (2001) Human neural stem cells improve cognitive function of aged brain. Neuroreport 12(6):1127–1132

    Article  CAS  PubMed  Google Scholar 

  101. Kern DS, Maclean KN, Jiang H, Synder EY, Sladek JR, Jr., Bjugstad KB Neural stem cells reduce hippocampal tau and reelin accumulation in aged Ts65Dn Down syndrome mice. Cell Transplant 20 (3):371–379. doi:10.3727/096368910X528085

  102. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN, LaFerla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 106(32):13594–13599. doi:10.1073/pnas.0901402106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yamasaki TR, Blurton-Jones M, Morrissette DA, Kitazawa M, Oddo S, LaFerla FM (2007) Neural stem cells improve memory in an inducible mouse model of neuronal loss. J Neurosci 27(44):11925–11933. doi:10.1523/JNEUROSCI.1627–07.2007

    Article  CAS  PubMed  Google Scholar 

  104. Xuan AG, Luo M, Ji WD, Long DH (2009) Effects of engrafted neural stem cells in Alzheimer’s disease rats. Neurosci Lett 450(2):167–171. doi:10.1016/j.neulet.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  105. Kim S, Chang KA, Kim J, Park HG, Ra JC, Kim HS, Suh YH The preventive and therapeutic effects of intravenous human adipose-derived stem cells in Alzheimer’s disease mice. PLoS One 7 (9):e45757. doi:10.1371/journal.pone.0045757

  106. Wang Q, Matsumoto Y, Shindo T, Miyake K, Shindo A, Kawanishi M, Kawai N, Tamiya T, Nagao S (2006) Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease. J Med Invest 53(1–2):61–69

    Article  PubMed  Google Scholar 

  107. Esmaeilzade B, Nobakht M, Joghataei MT, Rahbar Roshandel N, Rasouli H, Samadi Kuchaksaraei A, Hosseini SM, Najafzade N, Asalgoo S, Hejazian LB, Moghani Ghoroghi F Delivery of epidermal neural crest stem cells (EPI-NCSC) to hippocamp in Alzheimer’s disease rat model. Iran Biomed J 16 (1):1–9

  108. Lee GJ, Lu PH, Medina LD, Rodriguez-Agudelo Y, Melchor S, Coppola G, Braskie MN, Hua X, Apostolova LG, Leow AD, Thompson PM, Ringman JM Regional brain volume differences in symptomatic and presymptomatic carriers of familial Alzheimer’s disease mutations. J Neurol Neurosurg Psychiatry 84 (2):154–162. doi:10.1136/jnnp-2011–302087

  109. Wu L, Sluiter AA, Guo HF, Balesar RA, Swaab DF, Zhou JN, Verwer RW (2008) Neural stem cells improve neuronal survival in cultured postmortem brain tissue from aged and Alzheimer patients. J Cell Mol Med 12(5A):1611–1621. doi:10.1111/j.1582–4934.2007.00203.x

    Article  CAS  PubMed  Google Scholar 

  110. Sugaya K, Merchant S (2008) How to approach Alzheimer’s disease therapy using stem cell technologies. J Alzheimers Dis 15(2):241–254

    Article  CAS  PubMed  Google Scholar 

  111. Waldau B, Shetty AK (2008) Behavior of neural stem cells in the Alzheimer brain. Cell Mol Life Sci 65(15):2372–2384. doi:10.1007/s00018–008–8053-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21(2):183–186. doi:10.1038/nbt780

    Article  CAS  PubMed  Google Scholar 

  113. Xu Y, Tamamaki N, Noda T, Kimura K, Itokazu Y, Matsumoto N, Dezawa M, Ide C (2005) Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol 192(2):251–264. doi:10.1016/j.expneurol.2004.12.021

    Article  CAS  PubMed  Google Scholar 

  114. Moghadam FH, Alaie H, Karbalaie K, Tanhaei S, Nasr Esfahani MH, Baharvand H (2009) Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation 78(2–3):59–68. doi:10.1016/j.diff.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  115. Tang J, Xu H, Fan X, Li D, Rancourt D, Zhou G, Li Z, Yang L (2008) Embryonic stem cell-derived neural precursor cells improve memory dysfunction in Abeta (1–40) injured rats. Neurosci Res 62(2):86–96. doi:10.1016/j.neures.2008.06.005

    Article  CAS  PubMed  Google Scholar 

  116. Schwartz CM, Tavakoli T, Jamias C, Park SS, Maudsley S, Martin B, Phillips TM, Yao PJ, Itoh K, Ma W, Rao MS, Arenas E, Mattson MP Stromal factors SDF1alpha, sFRP1, and VEGFD induce dopaminergic neuron differentiation of human pluripotent stem cells. J Neurosci Res 90 (7):1367–1381. doi:10.1002/jnr.23064

  117. Cho EG, Zaremba JD, McKercher SR, Talantova M, Tu S, Masliah E, Chan SF, Nakanishi N, Terskikh A, Lipton SA MEF2C enhances dopaminergic neuron differentiation of human embryonic stem cells in a parkinsonian rat model. PLoS One 6 (8):e24027. doi:10.1371/journal.pone.0024027PONE-D-11–07261

  118. Liu Y, Weick JP, Liu H, Krencik R, Zhang X, Ma L, Zhou GM, Ayala M, Zhang SC Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol 31 (5):440–447. doi:10.1038/nbt.2565

  119. Fan X, Sun D, Tang X, Cai Y, Yin ZQ, Xu H Stem-cell challenges in the treatment of Alzheimer’s disease: a long way from bench to bedside. Med Res Rev. doi:10.1002/med.21309

  120. Mohamet L, Miazga NJ, Ward CM Familial Alzheimer’s disease modelling using induced pluripotent stem cell technology. World J Stem Cells 6 (2):239–247. doi:10.4252/wjsc.v6.i2.239

  121. Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Okano H, Suzuki N [Modeling familial Alzheimer’s disease with induced pluripotent stem cells]. Rinsho Shinkeigaku 52 (11):1134–1136

  122. Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20 (23):4530–4539. doi:10.1093/hmg/ddr394

  123. Yahata N, Asai M, Kitaoka S, Takahashi K, Asaka I, Hioki H, Kaneko T, Maruyama K, Saido TC, Nakahata T, Asada T, Yamanaka S, Iwata N, Inoue H Anti-Abeta drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer’s disease. PLoS One 6 (9):e25788. doi:10.1371/journal.pone.0025788PONE-D-11–09488

  124. Kremer B, Goldberg P, Andrew SE, Theilmann J, Telenius H, Zeisler J, Squitieri F, Lin B, Bassett A, Almqvist E et al (1994) A worldwide study of the Huntington’s disease mutation. The sensitivity and specificity of measuring CAG repeats. N Engl J Med 330(20):1401–1406. doi:10.1056/NEJM199405193302001

    Article  CAS  PubMed  Google Scholar 

  125. Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228. doi:10.1016/S0140–6736(07)60111–1

    Article  CAS  PubMed  Google Scholar 

  126. Im W, Kim M (2014) Cell Therapy strategies vs. paracrine effect in Huntington’s disease. J Mov Disord 7 (1):1–6. doi:10.14802/jmd.14001

  127. Visnyei K, Tatsukawa KJ, Erickson RI, Simonian S, Oknaian N, Carmichael ST, Kornblum HI (2006) Neural progenitor implantation restores metabolic deficits in the brain following striatal quinolinic acid lesion. Exp Neurol 197(2):465–474. doi:10.1016/j.expneurol.2005.10.023

    Article  PubMed  Google Scholar 

  128. Vazey EM, Chen K, Hughes SM, Connor B (2006) Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington’s disease. Exp Neurol 199(2):384–396. doi:10.1016/j.expneurol.2006.01.034

    Article  PubMed  Google Scholar 

  129. Amin EM, Reza BA, Morteza BR, Maryam MM, Ali M, Zeinab N (2008) Microanatomical evidences for potential of mesenchymal stem cells in amelioration of striatal degeneration. Neurol Res 30(10):1086–1090. doi:10.1179/174313208X327955

    Article  PubMed  Google Scholar 

  130. Juopperi TA, Kim WR, Chiang CH, Yu H, Margolis RL, Ross CA, Ming GL, Song H Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol Brain 5:17. doi:10.1186/1756–6606–5–17

  131. Fink KD, Crane AT, Leveque X, Dues DJ, Huffman LD, Moore AC, Story DT, Dejonge RE, Antcliff A, Starski PA, Lu M, Lescaudron L, Rossignol J, Dunbar GL Intrastriatal transplantation of adenovirus-generated induced pluripotent stem cells for treating neuropathological and functional deficits in a rodent model of Huntington’s disease. Stem Cells Transl Med 3 (5):620–631. doi:10.5966/sctm.2013–0151

  132. Traxinger K, Kelly C, Johnson BA, Lyles RH, Glass JD (2013) Prognosis and epidemiology of amyotrophic lateral sclerosis: analysis of a clinic population, 1997–2011. Neurol Clin Pract 3(4):313–320. doi:10.1212/CPJ.0b013e3182a1b8ab

    Article  PubMed  PubMed Central  Google Scholar 

  133. Vucic S, Rothstein JD, Kiernan MC (2014) Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends Neurosci. doi:10.1016/j.tins.2014.05.006

    PubMed  Google Scholar 

  134. Burrell JR, Vucic S, Kiernan MC (2011) Isolated bulbar phenotype of amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12(4):283–289. doi:10.3109/17482968.2011.551940

    Article  PubMed  Google Scholar 

  135. Wolfson C, Kilborn S, Oskoui M, Genge A (2009) Incidence and prevalence of amyotrophic lateral sclerosis in Canada: a systematic review of the literature. Neuroepidemiology 33(2):79–88. doi:10.1159/000222089

    Article  CAS  PubMed  Google Scholar 

  136. Sun H, Hou Z, Yang H, Meng M, Li P, Zou Q, Yang L, Chen Y, Chai H, Zhong H, Yang ZZ, Zhao J, Lai L, Jiang X, Xiao Z Multiple systemic transplantations of human amniotic mesenchymal stem cells exert therapeutic effects in an ALS mouse model. Cell Tissue Res. doi:10.1007/s00441–014–1903-z

  137. Boido M, Piras A, Valsecchi V, Spigolon G, Mareschi K, Ferrero I, Vizzini A, Temi S, Mazzini L, Fagioli F, Vercelli A. Human mesenchymal stromal cell transplantation modulates neuroinflammatory milieu in a mouse model of amyotrophic lateral sclerosis. Cytotherapy. doi:10.1016/j.jcyt.2014.02.003

  138. Chestkov IV, Vasilieva EA, Illarioshkin SN, Lagarkova MA, Kiselev SL Patient-specific induced pluripotent stem cells for SOD1-associated amyotrophic lateral sclerosis pathogenesis studies. Acta Naturae 6 (1):54–60

  139. Nizzardo M, Simone C, Rizzo F, Ruggieri M, Salani S, Riboldi G, Faravelli I, Zanetta C, Bresolin N, Comi GP, Corti S Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Hum Mol Genet 23 (2):342–354. doi:10.1093/hmg/ddt425

  140. Pan T, Kondo S, Le W, Jankovic J (2008) The role of autophagy–lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131(Pt 8):1969–1978. doi:10.1093/brain/awm318

    Article  PubMed  Google Scholar 

  141. Lattanzi A, Neri M, Maderna C, di Girolamo I, Martino S, Orlacchio A, Amendola M, Naldini L, Gritti A (2010) Widespread enzymatic correction of CNS tissues by a single intracerebral injection of therapeutic lentiviral vector in leukodystrophy mouse models. Hum Mol Genet 19(11):2208–2227. doi:10.1093/hmg/ddq099

    Article  CAS  PubMed  Google Scholar 

  142. Martino S, di Girolamo I, Cavazzin C, Tiribuzi R, Galli R, Rivaroli A, Valsecchi M, Sandhoff K, Sonnino S, Vescovi A, Gritti A, Orlacchio A (2009) Neural precursor cell cultures from GM2 gangliosidosis animal models recapitulate the biochemical and molecular hallmarks of the brain pathology. J Neurochem 109(1):135–147. doi:10.1111/j.1471–4159.2009.05919.x

    Article  CAS  PubMed  Google Scholar 

  143. Martino S, Marconi P, Tancini B, Dolcetta D, De Angelis MG, Montanucci P, Bregola G, Sandhoff K, Bordignon C, Emiliani C, Manservigi R, Orlacchio A (2005) A direct gene transfer strategy via brain internal capsule reverses the biochemical defect in Tay-Sachs disease. Hum Mol Genet 14(15):2113–2123. doi:10.1093/hmg/ddi216

    Article  CAS  PubMed  Google Scholar 

  144. Biffi A, Cesani M, Fumagalli F, Del Carro U, Baldoli C, Canale S, Gerevini S, Amadio S, Falautano M, Rovelli A, Comi G, Roncarolo MG, Sessa M (2008) Metachromatic leukodystrophy—mutation analysis provides further evidence of genotype-phenotype correlation. Clin Genet 74(4):349–357. doi:10.1111/j.1399–0004.2008.01058.x

    Article  CAS  PubMed  Google Scholar 

  145. Hu YF, Gourab K, Wells C, Clewes O, Schmit BD, Sieber-Blum M (2010) Epidermal neural crest stem cell (EPI-NCSC)-mediated recovery of sensory function in a mouse model of spinal cord injury. Stem Cell Rev 6(2):186–198. doi:10.1007/s12015–010–9152–3

    Article  PubMed  PubMed Central  Google Scholar 

  146. Siatskas C, Bernard CC (2009) Stem cell and gene therapeutic strategies for the treatment of multiple sclerosis. Curr Mol Med 9(8):992–1016

    Article  CAS  PubMed  Google Scholar 

  147. Bithell A, Williams BP (2005) Neural stem cells and cell replacement therapy: making the right cells. Clin Sci (Lond) 108(1):13–22. doi:10.1042/CS20040276->

    Article  CAS  Google Scholar 

  148. Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, Boehm BO, Maisel M, Lerche H, Schwarz J, Brenner R, Storch A (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117(Pt 19):4411–4422. doi:10.1242/jcs.01307

    Article  CAS  PubMed  Google Scholar 

  149. Jang YK, Park JJ, Lee MC, Yoon BH, Yang YS, Yang SE, Kim SU (2004) Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J Neurosci Res 75(4):573–584. doi:10.1002/jnr.10789

    Article  CAS  PubMed  Google Scholar 

  150. Joannides A, Gaughwin P, Schwiening C, Majed H, Sterling J, Compston A, Chandran S (2004) Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet 364(9429):172–178. doi:10.1016/S0140–6736(04)16630–0

    Article  CAS  PubMed  Google Scholar 

  151. McGuckin CP, Forraz N, Allouard Q, Pettengell R (2004) Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Exp Cell Res 295(2):350–359. doi:10.1016/j.yexcr.2003.12.028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our lab members for critical reading of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

Authors’ Contributions

GU wrote the manuscript; SS and RKS edited the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sharmila Shankar or Rakesh K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, G., Shankar, S. & Srivastava, R.K. Stem Cells in Neurological Disorders: Emerging Therapy with Stunning Hopes. Mol Neurobiol 52, 610–625 (2015). https://doi.org/10.1007/s12035-014-8883-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8883-6

Keywords

Navigation