Skip to main content
Log in

Ischemic Preconditioning Provides Neuroprotection by Induction of AMP-Activated Protein Kinase-Dependent Autophagy in a Rat Model of Ischemic Stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Accumulating evidence suggests that ischemic preconditioning (IPC) increases cerebral tolerance to the subsequent ischemic exposure. However, the underlying mechanisms are still not fully understood. In the present study, we tested the hypothesis that AMP-activated protein kinase (AMPK)-dependent autophagy contributed to the neuroprotection of IPC in rats with permanent cerebral ischemia. Male Sprague–Dawley rats were pretreated with vehicle, compound C (an AMPK inhibitor), or 3-methyladenine (3-MA, an autophagy inhibitor) and then were subjected to IPC induced by a 10-min middle cerebral artery occlusion. Afterward, the brain AMPK activity and autophagy biomarkers were measured. At 24 h after IPC, permanent cerebral ischemia was induced in these rats, and infarct volume, neurological deficits as well as cell apoptosis were evaluated 24 h later. We demonstrated that IPC activated AMPK and induced autophagy in the brain, which was accompanied by a reduction of infract volume, neurological deficits, and cell apoptosis after cerebral ischemia. Meanwhile, the IPC-induced autophagy was inhibited by compound C while the neuroprotection of IPC was abolished by compound C or 3-MA. These findings suggest that AMPK-mediated autophagy contributes to the neuroprotection of IPC, highlighting AMPK as a therapeutic target for stroke prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ovbiagele B, Goldstein LB, Higashida RT, Howard VJ, Johnston SC, Khavjou OA, Lackland DT, Lichtman JH, Mohl S, Sacco RL, Saver JL, Trogdon JG (2013) Forecasting the future of stroke in the United States: a policy statement from the American Heart Association nd American Stroke Association. Stroke J Cereb Circ 44(8):2361–2375. doi:10.1161/STR.0b013e31829734f2

    Article  Google Scholar 

  2. Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88(1):211–247. doi:10.1152/physrev.00039.2006

    Article  CAS  PubMed  Google Scholar 

  3. Dirnagl U, Becker K, Meisel A (2009) Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 8(4):398–412. doi:10.1016/S1474-4422(09)70054-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Zhao H (2009) Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 29(5):873–885. doi:10.1038/jcbfm.2009.13

    Article  CAS  Google Scholar 

  5. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7(6):437–448. doi:10.1038/nrn1927

    Article  CAS  PubMed  Google Scholar 

  6. Lin WY, Chang YC, Ho CJ, Huang CC (2013) Ischemic preconditioning reduces neurovascular damage after hypoxia-ischemia via the cellular inhibitor of apoptosis 1 in neonatal brain. Stroke J Cereb Circ 44(1):162–169. doi:10.1161/STROKEAHA.112.677617

    Article  Google Scholar 

  7. Hoda MN, Siddiqui S, Herberg S, Periyasamy-Thandavan S, Bhatia K, Hafez SS, Johnson MH, Hill WD, Ergul A, Fagan SC, Hess DC (2012) Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke J Cereb Circ 43(10):2794–2799. doi:10.1161/STROKEAHA.112.660373

    Article  CAS  Google Scholar 

  8. Meng R, Asmaro K, Meng L, Liu Y, Ma C, Xi C, Li G, Ren C, Luo Y, Ling F, Jia J, Hua Y, Wang X, Ding Y, Lo EH, Ji X (2012) Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology 79(18):1853–1861. doi:10.1212/WNL.0b013e318271f76a

    Article  PubMed  Google Scholar 

  9. Li J, McCullough LD (2010) Effects of AMP-activated protein kinase in cerebral ischemia. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 30(3):480–492. doi:10.1038/jcbfm.2009.255

    Article  CAS  Google Scholar 

  10. Weisova P, Davila D, Tuffy LP, Ward MW, Concannon CG, Prehn JH (2011) Role of 5′-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons. Antioxid Redox Signal 14(10):1863–1876. doi:10.1089/ars.2010.3544

    Article  CAS  PubMed  Google Scholar 

  11. Hardie DG (2003) Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144(12):5179–5183. doi:10.1210/en.2003-0982

    Article  CAS  PubMed  Google Scholar 

  12. Peralta C, Bartrons R, Serafin A, Blazquez C, Guzman M, Prats N, Xaus C, Cutillas B, Gelpi E, Rosello-Catafau J (2001) Adenosine monophosphate-activated protein kinase mediates the protective effects of ischemic preconditioning on hepatic ischemia-reperfusion injury in the rat. Hepatology 34(6):1164–1173. doi:10.1053/jhep.2001.29197

    Article  CAS  PubMed  Google Scholar 

  13. Nishino Y, Miura T, Miki T, Sakamoto J, Nakamura Y, Ikeda Y, Kobayashi H, Shimamoto K (2004) Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection. Cardiovasc Res 61(3):610–619. doi:10.1016/j.cardiores.2003.10.022

    Article  CAS  PubMed  Google Scholar 

  14. Sukhodub A, Jovanovic S, Du Q, Budas G, Clelland AK, Shen M, Sakamoto K, Tian R, Jovanovic A (2007) AMP-activated protein kinase mediates preconditioning in cardiomyocytes by regulating activity and trafficking of sarcolemmal ATP-sensitive K(+) channels. J Cell Physiol 210(1):224–236. doi:10.1002/jcp.20862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gaskin FS, Kamada K, Zuidema MY, Jones AW, Rubin LJ, Korthuis RJ (2011) Isoform-selective 5′-AMP-activated protein kinase-dependent preconditioning mechanisms to prevent postischemic leukocyte-endothelial cell adhesive interactions. Am J Physiol Heart Circ Physiol 300(4):H1352–H1360. doi:10.1152/ajpheart.00944.2010

    Article  CAS  PubMed  Google Scholar 

  16. Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, Li H, Rathi S, Dong Y, Tian R, Kem D, Zou MH (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60(6):1770–1778. doi:10.2337/db10-0351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100(6):914–922. doi:10.1161/01.RES.0000261924.76669.36

    Article  CAS  PubMed  Google Scholar 

  18. Wang LT, Chen BL, Wu CT, Huang KH, Chiang CK, Hwa Liu S (2013) Protective role of AMP-activated protein kinase-evoked autophagy on an in vitro model of ischemia/reperfusion-induced renal tubular cell injury. PLoS One 8(11):e79814. doi:10.1371/journal.pone.0079814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Nepal S, Park PH (2013) Activation of autophagy by globular adiponectin attenuates ethanol-induced apoptosis in HepG2 cells: involvement of AMPK/FoxO3A axis. Biochim Biophys Acta 1833(10):2111–2125. doi:10.1016/j.bbamcr.2013.05.013

    Article  CAS  PubMed  Google Scholar 

  20. Zaouali MA, Boncompagni E, Reiter RJ, Bejaoui M, Freitas I, Pantazi E, Folch-Puy E, Abdennebi HB, Garcia-Gil FA, Rosello-Catafau J (2013) AMPK involvement in endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: a role for melatonin and trimetazidine cocktail. J Pineal Res. doi:10.1111/jpi.12051

    PubMed  Google Scholar 

  21. Pauly M, Daussin F, Burelle Y, Li T, Godin R, Fauconnier J, Koechlin-Ramonatxo C, Hugon G, Lacampagne A, Coisy-Quivy M, Liang F, Hussain S, Matecki S, Petrof BJ (2012) AMPK activation stimulates autophagy and ameliorates muscular dystrophy in the mdx mouse diaphragm. Am J Pathol 181(2):583–592. doi:10.1016/j.ajpath.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  22. Wei K, Wang P, Miao CY (2012) A double-edged sword with therapeutic potential: an updated role of autophagy in ischemic cerebral injury. CNS Neurosci Ther 18(11):879–886. doi:10.1111/cns.12005

    Article  PubMed  Google Scholar 

  23. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4(6):762–769

    Article  CAS  PubMed  Google Scholar 

  24. Wei N, Yu SP, Gu XH, Chen DD, Whalin MK, Xu GL, Liu XF, Wei L (2013) The involvement of autophagy pathway in exaggerated ischemic brain damage in diabetic mice. CNS Neurosci Ther 19(10):753–763. doi:10.1111/cns.12123

    CAS  PubMed  Google Scholar 

  25. Sheng R, Zhang LS, Han R, Liu XQ, Gao B, Qin ZH (2010) Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy 6(4):482–494. doi:10.4161/auto.6.4.11737

    Article  CAS  PubMed  Google Scholar 

  26. Sheng R, Liu XQ, Zhang LS, Gao B, Han R, Wu YQ, Zhang XY, Qin ZH (2012) Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy 8(3):310–325. doi:10.4161/auto.18673

    Article  CAS  PubMed  Google Scholar 

  27. McCullough LD, Zeng Z, Li H, Landree LE, McFadden J, Ronnett GV (2005) Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J Biol Chem 280(21):20493–20502. doi:10.1074/jbc.M409985200

    Article  CAS  PubMed  Google Scholar 

  28. Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, Zhang QQ, Gao L, Shi JQ, Zhang YD, Tan L (2014) Acute metformin preconditioning confers neuroprotection against focal cerebral ischemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol. doi:10.1111/bph.12655

    PubMed Central  Google Scholar 

  29. Gao L, Jiang T, Guo J, Liu Y, Cui G, Gu L, Su L, Zhang Y (2012) Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One 7(9):e46092. doi:10.1371/journal.pone.0046092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Jiang T, Gao L, Zhu XC, Yu JT, Shi JQ, Tan MS, Lu J, Tan L, Zhang YD (2013) Angiotensin-(1-7) inhibits autophagy in the brain of spontaneously hypertensive rats. Pharmacol Res Off J Ital Pharmacol Soc 71:61–68. doi:10.1016/j.phrs.2013.03.001

    CAS  Google Scholar 

  31. Jiang T, Yu JT, Zhu XC, Tan MS, Wang HF, Cao L, Zhang QQ, Shi JQ, Gao L, Qin H, Zhang YD, Tan L (2014) Temsirolimus promotes autophagic clearance of amyloid-beta and provides protective effects in cellular and animal models of Alzheimer’s disease. Pharmacol Res Off J Ital Pharmacol Soc 81:54–63. doi:10.1016/j.phrs.2014.02.008

    CAS  Google Scholar 

  32. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 10(2):290–293. doi:10.1038/jcbfm.1990.47

    Article  CAS  Google Scholar 

  33. Jiang T, Gao L, Shi J, Lu J, Wang Y, Zhang Y (2013) Angiotensin-(1-7) modulates renin-angiotensin system associated with reducing oxidative stress and attenuating neuronal apoptosis in the brain of hypertensive rats. Pharmacol Res Off J Ital Pharmacol Soc 67(1):84–93. doi:10.1016/j.phrs.2012.10.014

    CAS  Google Scholar 

  34. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke J Cereb Circ 17(3):472–476

    Article  CAS  Google Scholar 

  35. Zhang J, Chiu J, Zhang H, Qi T, Tang Q, Ma K, Lu H, Li G (2013) Autophagic cell death induced by resveratrol depends on the Ca(2+)/AMPK/mTOR pathway in A549 cells. Biochem Pharmacol 86(2):317–328. doi:10.1016/j.bcp.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  36. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141. doi:10.1038/ncb2152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lum JJ, DeBerardinis RJ, Thompson CB (2005) Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 6(6):439–448. doi:10.1038/nrm1660

    Article  CAS  PubMed  Google Scholar 

  38. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462(2):245–253. doi:10.1016/j.abb.2007.03.034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Gao B, Zhang XY, Han R, Zhang TT, Chen C, Qin ZH, Sheng R (2013) The endoplasmic reticulum stress inhibitor salubrinal inhibits the activation of autophagy and neuroprotection induced by brain ischemic preconditioning. Acta Pharmacol Sin 34(5):657–666. doi:10.1038/aps.2013.34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bu Q, Liu X, Zhu Y, Liu Y, Wang Y (2014) w007B protects brain against ischemia-reperfusion injury in rats through inhibiting inflammation, apoptosis and autophagy. Brain Res 1558:100–108. doi:10.1016/j.brainres.2014.02.034

    Article  CAS  PubMed  Google Scholar 

  41. Heckmann BL, Yang X, Zhang X, Liu J (2013) The autophagic inhibitor 3-methyladenine potently stimulates PKA-dependent lipolysis in adipocytes. Br J Pharmacol 168(1):163–171. doi:10.1111/j.1476-5381.2012.02110.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen HM (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285(14):10850–10861. doi:10.1074/jbc.M109.080796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China to L.T. (81171209, 81371406) and J.T.Y. (81000544), the Shandong Provincial Natural Science Foundation to L.T. (ZR2011HZ001) and J.T.Y. (ZR2010HQ004), the Medicine and Health Science Technology Development Project of Shandong Province to L.T. (2011WSA02018) and J.T.Y. (2011WSA02020), and the Innovation Project for Postgraduates of Jiangsu Province to T.J. (CXLX13_561).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Tai Yu or Lan Tan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig S1

The IPC-induced autophagy was significantly inhibited by pretreatment with 3-MA. Rats were pretreated with a single dose of 3-MA (200 nmol; i.c.v.) 5 min before they subjected to IPC. Twenty-four hours later, the protein levels of LC3-II was determined by western blotting. n=6 per group. Columns represent mean±SD. Abbreviations: Veh, Vehicle.1 (GIF 20 kb)

High resolution Image (TIFF 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Yu, JT., Zhu, XC. et al. Ischemic Preconditioning Provides Neuroprotection by Induction of AMP-Activated Protein Kinase-Dependent Autophagy in a Rat Model of Ischemic Stroke. Mol Neurobiol 51, 220–229 (2015). https://doi.org/10.1007/s12035-014-8725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8725-6

Keywords

Navigation