Skip to main content

Advertisement

Log in

Clearance of Amyloid-Beta in Alzheimer’s Disease: Shifting the Action Site from Center to Periphery

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Amyloid-beta (Aβ) is suggested to play a causal role in the pathogenesis of Alzheimer’s disease (AD). Immunotherapies are among the most promising Aβ-targeting therapeutic strategies for AD. But, to date, all clinical trials of this modality have not been successful including Aβ vaccination (AN1792), anti-Aβ antibodies (bapineuzumab, solanezumab and ponezumab), and intravenous immunoglobulin (IVIG). We propose that one reason for the failures of these clinical trials may be the adverse effects of targeting the central clearance of amyloid plaques. The potential adverse effects include enhanced neurotoxicity related to Aβ oligomerization from plaques, neuroinflammation related to opsonized Aβ phagocytosis, autoimmunity related to cross-binding of antibodies to amyloid precursor protein (APP) on the neuron membrane, and antibody-mediated vascular and neuroskeletal damage. Overall, the majority of the adverse effects seen in clinical trials were associated with the entry of antibodies into the brain. Finally, we propose that peripheral Aβ clearance would be effective and safe for future Aβ-targeting therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dodel R et al (2013) Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer’s disease: a phase 2, randomised, double-blind, placebo-controlled, dose-finding trial. Lancet Neurol 12:233–243. doi:10.1016/S1474-4422(13)70014-0

    Article  CAS  PubMed  Google Scholar 

  2. Doody RS et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370:311–321. doi:10.1056/NEJMoa1312889

    Article  CAS  PubMed  Google Scholar 

  3. Karran E, Hardy J (2014) Antiamyloid therapy for Alzheimer’s disease—are we on the right road? N Engl J Med 370:377–378. doi:10.1056/NEJMe1313943

    Article  CAS  PubMed  Google Scholar 

  4. Salloway S et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370:322–333. doi:10.1056/NEJMoa1304839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wang YJ (2014) Lessons from immunotherapy for Alzheimer disease. Nat Rev Neurol 10:188–189. doi:10.1038/nrneurol.2014.44

    Google Scholar 

  6. Wang YJ, Zhou HD, Zhou XF (2010) Modified immunotherapies against Alzheimer’s disease: toward safer and effective amyloid clearance. J Alzheimer Dis 21:1065–1075

    CAS  Google Scholar 

  7. DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 98:8850–8855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM (2002) Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 295:2264–2267

    Article  CAS  PubMed  Google Scholar 

  9. Morgan D (2011) Immunotherapy for Alzheimer’s disease. J Int Med 269:54–63. doi:10.1111/j.1365-2796.2010.02315.x

    Article  CAS  Google Scholar 

  10. Sperling R et al (2012) Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol 11:241–249. doi:10.1016/S1474-4422(12)70015-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Carlson C et al (2011) Prevalence of asymptomatic vasogenic edema in pretreatment Alzheimer’s disease study cohorts from phase 3 trials of semagacestat and solanezumab. Alzheimer Dement 7:396–401. doi:10.1016/j.jalz.2011.05.2353

    Article  CAS  Google Scholar 

  12. Gilman S et al (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–1562

    Article  CAS  PubMed  Google Scholar 

  13. Millucci L, Ghezzi L, Bernardini G, Santucci A (2010) Conformations and biological activities of amyloid beta peptide 25-35. Curr Protein Peptide Sci 11:54–67

    Article  CAS  Google Scholar 

  14. Colletier JP et al (2011) Molecular basis for amyloid-beta polymorphism. Proc Natl Acad Sci U S A 108:16938–16943. doi:10.1073/pnas.1112600108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Mannix RC, Whalen MJ (2012) Traumatic brain injury, microglia, and Beta amyloid. Int J Alzheimer Dis 2012:608732. doi:10.1155/2012/608732

    Google Scholar 

  16. Dilger RN, Johnson RW (2008) Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol 84:932–939. doi:10.1189/jlb.0208108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Pietri M et al (2013) PDK1 decreases TACE-mediated alpha-secretase activity and promotes disease progression in prion and Alzheimer’s diseases. Nat Med 19:1124–1131. doi:10.1038/nm.3302

    Article  CAS  PubMed  Google Scholar 

  18. Krstic D, Knuesel I (2012) Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 9:25–34. doi:10.1038/nrneurol.2012.236

    Article  PubMed  Google Scholar 

  19. Rhinn H, Fujita R, Qiang L, Cheng R, Lee JH, Abeliovich A (2013) Integrative genomics identifies APOE epsilon4 effectors in Alzheimer’s disease. Nature 500:45–50. doi:10.1038/nature12415

    Article  CAS  PubMed  Google Scholar 

  20. Ohtani S, Kohyama K, Matsumoto Y (2011) Autoantibodies recognizing native MOG are closely associated with active demyelination but not with neuroinflammation in chronic EAE. Neuropathology 31:101–111. doi:10.1111/j.1440-1789.2010.01131.x

    Article  PubMed  Google Scholar 

  21. Patton RL et al (2006) Amyloid-beta peptide remnants in AN-1792-immunized Alzheimer’s disease patients: a biochemical analysis. Am J Pathol 169:1048–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Deng J et al (2012) Autoreactive-Abeta antibodies promote APP beta-secretase processing. J Neurochem 120:732–740. doi:10.1111/j.1471-4159.2011.07629.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Dodel R et al (2011) Naturally occurring autoantibodies against beta-amyloid: investigating their role in transgenic animal and in vitro models of Alzheimer’s disease. J Neurosci 31:5847–5854. doi:10.1523/JNEUROSCI.4401-10.2011

    Article  CAS  PubMed  Google Scholar 

  24. Piazza F et al (2013) Anti-amyloid beta autoantibodies in cerebral amyloid angiopathy-related inflammation: implications for amyloid-modifying therapies. Ann Neurol 73:449–458. doi:10.1002/ana.23857

    Google Scholar 

  25. Bouras C, Riederer BM, Hof PR, Giannakopoulos P (2003) Induction of MC-1 immunoreactivity in axons after injection of the Fc fragment of human immunoglobulins in macaque monkeys. Acta Neuropathol 105:58–64. doi:10.1007/s00401-002-0617-6

    CAS  PubMed  Google Scholar 

  26. Farlow M et al (2012) Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement 8:261–271. doi:10.1016/j.jalz.2011.09.224

    Article  CAS  PubMed  Google Scholar 

  27. Bradshaw EM et al (2013) CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16:848–850. doi:10.1038/nn.3435

    Article  CAS  PubMed  Google Scholar 

  28. Bard F et al (2012) Sustained levels of antibodies against Abeta in amyloid-rich regions of the CNS following intravenous dosing in human APP transgenic mice. Exp Neurol 238:38–43. doi:10.1016/j.expneurol.2012.07.022

    Article  CAS  PubMed  Google Scholar 

  29. Wang YJ et al (2010) Intramuscular delivery of a single chain antibody gene prevents brain Abeta deposition and cognitive impairment in a mouse model of Alzheimer’s disease. Brain Behav Immun 24:1281–1293. doi:10.1016/j.bbi.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  30. Wang YJ et al (2009) Intramuscular delivery of a single chain antibody gene reduces brain Abeta burden in a mouse model of Alzheimer’s disease. Neurobiol Aging 30:364–376. doi:10.1016/j.neurobiolaging.2007.06.013

    Article  PubMed  Google Scholar 

  31. Fukumoto H, Deng A, Irizarry MC, Fitzgerald ML, Rebeck GW (2002) Induction of the cholesterol transporter ABCA1 in central nervous system cells by liver X receptor agonists increases secreted Abeta levels. J Biol Chem 277:48508–48513. doi:10.1074/jbc.M209085200

    Article  CAS  PubMed  Google Scholar 

  32. Hooijmans CR, Kiliaan AJ (2008) Fatty acids, lipid metabolism and Alzheimer pathology. Eur J Pharmacol 585:176–196. doi:10.1016/j.ejphar.2007.11.081

    Article  CAS  PubMed  Google Scholar 

  33. Lesser GT (2012) Association of Alzheimer disease pathology with abnormal lipid metabolism: the Hisayama Study. Neurology 78:1280. doi:10.1212/WNL.0b013e318254f6ad

    Article  PubMed  Google Scholar 

  34. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630

    Article  CAS  PubMed  Google Scholar 

  35. Zerbinatti CV, Bu G (2005) LRP and Alzheimer’s disease. Rev Neurosci 16:123–135

    Article  CAS  PubMed  Google Scholar 

  36. Kang DE et al (2000) Modulation of amyloid beta-protein clearance and Alzheimer’s disease susceptibility by the LDL receptor-related protein pathway. J Clin Invest 106:1159–1166. doi:10.1172/JCI11013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Deane R, Wu Z, Zlokovic BV (2004) RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood-brain barrier. Stroke 35:2628–2631

    Article  CAS  PubMed  Google Scholar 

  38. Koldamova R, Staufenbiel M, Lefterov I (2005) Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. J Biol Chem 280:43224–43235. doi:10.1074/jbc.M504513200

    Article  CAS  PubMed  Google Scholar 

  39. Koldamova RP et al (2003) 22R-hydroxycholesterol and 9-cis-retinoic acid induce ATP-binding cassette transporter A1 expression and cholesterol efflux in brain cells and decrease amyloid beta secretion. J Biol Chem 278:13244–13256. doi:10.1074/jbc.M300044200

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y et al (2009) Expression of neprilysin in skeletal muscle reduces amyloid burden in a transgenic mouse model of Alzheimer disease. Mol Ther 17:1381–1386. doi:10.1038/mt.2009.115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Torkhovskaia TI, Ipatova OM, Medvedeva NV, Zakharova TS, Khalilov EM (2006) Membrane proteins and phospholipids as effectors of reverse cholesterol transport. Biomed Khim 52:113–123

    CAS  PubMed  Google Scholar 

  42. Zarubica A, Trompier D, Chimini G (2007) ABCA1, from pathology to membrane function. Pflugers Arch 453:569–579. doi:10.1007/s00424-006-0108-z

    Article  CAS  PubMed  Google Scholar 

  43. Sparks DL (2007) Cholesterol metabolism and brain amyloidosis: evidence for a role of copper in the clearance of Abeta through the liver. Curr Alzheimer Res 4:165–169

    Article  CAS  PubMed  Google Scholar 

  44. Tamaki C, Ohtsuki S, Terasaki T (2007) Insulin facilitates the hepatic clearance of plasma amyloid beta-peptide (1 40) by intracellular translocation of low-density lipoprotein receptor-related protein 1 (LRP-1) to the plasma membrane in hepatocytes. Mol Pharmacol 72:850–855. doi:10.1124/mol.107.036913

    Article  CAS  PubMed  Google Scholar 

  45. Seliger SL et al (2004) Moderate renal impairment and risk of dementia among older adults: the Cardiovascular Health Cognition Study. J Am Soc Nephrol 15:1904–1911

    Article  PubMed  Google Scholar 

  46. Li J et al (2011) Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology 76:1485–1491. doi:10.1212/WNL.0b013e318217e7a4

    Article  CAS  PubMed  Google Scholar 

  47. Li J et al (2010) Vascular risk aggravates the progression of Alzheimer’s disease in a Chinese cohort. J Alzheimers Dis 20:491–500. doi:10.3233/JAD-2010-1383

    PubMed  Google Scholar 

  48. Arvanitakis Z, Lucas JA, Younkin LH, Younkin SG, Graff-Radford NR (2002) Serum creatinine levels correlate with plasma amyloid Beta protein. Alzheimer Dis Assoc Disord 16:187–190

    Article  CAS  PubMed  Google Scholar 

  49. Stanyon HF, Viles JH (2012) Human serum albumin can regulate amyloid-beta peptide fiber growth in the brain interstitium: implications for Alzheimer disease. J Biol Chem 287:28163–28168. doi:10.1074/jbc.C112.360800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Naj AC et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441. doi:10.1038/ng.801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kiko T et al (2012) Amyloid beta levels in human red blood cells. PloS one 7:e49620. doi:10.1371/journal.pone.0049620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Lucas HR, Rifkind JM (2013) Considering the vascular hypothesis of Alzheimer’s disease: effect of copper associated amyloid on red blood cells. Adv Exp Med Biol 765:131–138. doi:10.1007/978-1-4614-4989-8_19

    Article  CAS  PubMed  Google Scholar 

  53. Rogers J et al (2006) Peripheral clearance of amyloid beta peptide by complement C3-dependent adherence to erythrocytes. Neurobiol Aging 27:1733–1739

    Article  CAS  PubMed  Google Scholar 

  54. Boada M et al (2009) Amyloid-targeted therapeutics in Alzheimer’s disease: use of human albumin in plasma exchange as a novel approach for Abeta mobilization. Drug News Perspect 22:325–339. doi:10.1358/dnp.2009.22.6.1395256

    Article  CAS  PubMed  Google Scholar 

  55. Sehgal N et al (2012) Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci U S A 109:3510–3515. doi:10.1073/pnas.1112209109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Guan H et al (2008) Peripherally expressed neprilysin reduces brain amyloid burden: a novel approach for treating Alzheimer’s disease. J Neurosci Res. doi:10.1002/jnr.21944

    Google Scholar 

  57. Liu Y, Studzinski C, Beckett T, Murphy MP, Klein RL, Hersh LB (2010) Circulating neprilysin clears brain amyloid. Mol Cell Neurosci 45:101–107. doi:10.1016/j.mcn.2010.05.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Henderson SJ et al (2013) Sustained peripheral depletion of amyloid-beta with a novel form of neprilysin does not affect central levels of amyloid-beta. Brain. doi:10.1093/brain/awt308

    PubMed Central  PubMed  Google Scholar 

  59. Walker JR et al (2013) Enhanced proteolytic clearance of plasma Abeta by peripherally administered neprilysin does not result in reduced levels of brain Abeta in mice. J Neurosci 33:2457–2464. doi:10.1523/JNEUROSCI.3407-12.2013

    Article  CAS  PubMed  Google Scholar 

  60. Liu Y et al (2007) In vitro and in vivo degradation of Abeta peptide by peptidases coupled to erythrocytes. Peptides 28:2348–2355. doi:10.1016/j.peptides.2007.09.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (grant no. 81270423 and 30973144) and the Natural Science Foundation Project of CQCSTC (grant no. CSTC2010BA5004). The authors thank N. Wei at Daping Hospital of Third Military Medical University for assistance with creating the figures and Ms Kate Rees from University of South Australia for critical reading of the manuscript.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Jiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YH., Wang, YR., Xiang, Y. et al. Clearance of Amyloid-Beta in Alzheimer’s Disease: Shifting the Action Site from Center to Periphery. Mol Neurobiol 51, 1–7 (2015). https://doi.org/10.1007/s12035-014-8694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8694-9

Keyword

Navigation