Skip to main content
Log in

Variable density wrinkling in polymer thin film by gradient stress induced in the elastomeric substrate

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Utilizing the self-organization of materials to make systematic and ordered wrinkled patterns can be very useful for optical, electronic, adhesives and many other applications. In this work, we have demonstrated the fabrication of a self-organized, linearly ordered, wrinkled pattern developed in the polystyrene (PS) thin film by controlled buckling in the film. Buckling was induced in the thin film by bending an elastic polydimethylsiloxane (PDMS) substrate along the two sides producing variable stress along both sides of the bending axis. Controlling of the self-organized patterns in the PS thin film was obtained by varying stress in the elastic PDMS substrate and thin-film thickness of PS. Theoretical analysis and experimental results were compared, and the developed structure was demonstrated to be used as a smart optical filter giving different intensities of diffused light for different positions of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dai Z, Liu L and Zhang Z 2019 Adv. Mater. 31 1

    Google Scholar 

  2. Wang M C, Leem J, Kang P, Choi J, Knapp P, Yong K et al 2017 2D Materials 4 044001

    Google Scholar 

  3. Pandurangi S S and Kulkarni S S 2015 Int. J. Solids Struct. 62 124

    Article  Google Scholar 

  4. Chen Y F, Hong J W, Chang J H, Junisu B A and Sun Y S 2021 Polymers 13 2480

    Article  CAS  PubMed  Google Scholar 

  5. Singh N, Verma A, Sachan P, Sharma A and Kulkarni M M 2021 ACS Appl. Polym. Mater. 3 6198

    Article  CAS  Google Scholar 

  6. Wu K, Sun Y, Yuan H, Zhang J, Liu G and Sun J 2020 Nano Lett. 20 4129

    Article  CAS  PubMed  Google Scholar 

  7. Moon M-W and Vaziri A S 2011 Procedia Eng. 10 224

    Article  CAS  Google Scholar 

  8. Chan E P, Smith E J, Hayward R C and Crosby A J 2008 Adv. Mater. 20 711

    Article  CAS  Google Scholar 

  9. Baetens R, Jelle B P and Gustavsen A 2010 Sol. Energy Mater. Sol. Cells 94 87

    Article  CAS  Google Scholar 

  10. Cannavale A, Ayr U, Fiorito F and Martellotta F 2020 Energies 13 1

    Google Scholar 

  11. Lampert C M 2004 Mater. Today 7 28

    Article  CAS  Google Scholar 

  12. Lee G, Bae G Y, Son J H, Lee S, Kim S W, Kim D et al 2020 Adv. Sci. 7 1

    Google Scholar 

  13. Wang Y, Runnerstrom E L and Milliron D J 2016 Annu. Rev. Chem. Biomol. Eng. 7 283

    Article  PubMed  Google Scholar 

  14. Stoney G G 1909 Proc. R. Soc. Lond. Ser. A 82 172

    Article  CAS  Google Scholar 

  15. Carmen M G H, Dallits H S O, Mauricio A S V and Juan R H 2016 Polymer 101 24

    Article  Google Scholar 

  16. Kim P, Hu Y, Alvarenga J, Kolle M, Suo Z and Aizenberg J 2013 Adv. Opt. Mater. 1 381

    Article  Google Scholar 

  17. Lee S G, Lee D Y, Lim H S, Lee D H, Lee S and Cho K 2010 Adv. Mater. 22 5013

    Article  CAS  PubMed  Google Scholar 

  18. Mei Y, Kiravittaya S, Harazim S and Schmidt O G 2010 Mater. Sci. Eng. R: Reports 70 209

    Article  Google Scholar 

  19. Li Z, Liu Y, Marin M and Yin Y 2020 Nano Res. 13 1882

    Article  Google Scholar 

  20. Wang J, Zheng Y, Li L, Liu E, Zong C, Zhao J et al 2019 ACS Appl. Mater. Interfaces 11 25595

    Article  CAS  PubMed  Google Scholar 

  21. Jiang H, Khang D Y, Song J, Sun Y, Huang Y and Rogers J A 2007 Proc. Natl. Acad. Sci. USA 104 15607

    Article  CAS  PubMed  Google Scholar 

  22. Mishra S, Kulkarni M M and Verma A 2021 Micron 151 103148

    Article  CAS  PubMed  Google Scholar 

  23. Sun J, Xia S, Moon M, Oh K H and Kim K 2018 Proc. R. Soc. A 468 932

    Article  Google Scholar 

  24. Bowden N, Brittain S, Evans A G, Hutchinson J W and Whiteside G M 1998 Nature 393 146

    Article  CAS  Google Scholar 

  25. Groenewold J 2001 Physica A: Stat. Mech. Appl. 298 32

    Article  Google Scholar 

  26. Tsapis N, Dufresne E R, Sinha S S, Riera C S, Hutchinson J W, Mahadevan L et al 2005 Phys. Rev. Lett. 94 018302

    Article  CAS  PubMed  Google Scholar 

  27. Pradhan S C 2009 Phys. Lett. A 373 4182

    Article  CAS  Google Scholar 

  28. Chen H-P 1991 AIAA J. 29 813

    Article  Google Scholar 

  29. Cheng H and Song J 2014 J. Appl. Mech. Trans. 81 1

    Google Scholar 

  30. Song J, Jiang H, Liu Z J, Khang D Y, Huang Y, Rogers J A et al 2008 Int. J. Solids Struct. 45 3107

    Article  Google Scholar 

  31. Wang Z, Volinsky A A and Gallant N D 2014 J. Appl. Polym. Sci. 131 41050

    Article  Google Scholar 

  32. Swalowe G M and Lee S F 2006 J. Mater. Sci. 41 6280

    Article  Google Scholar 

  33. Yu L, Shi Z Z, Fang C, Zhang Y Y, Liu Y S and Li C M 2015 Biosens. Bioelectron. 69 307

    Article  CAS  PubMed  Google Scholar 

  34. Contreras-Naranjo J C, Wei Q and Ozcan A 2016 IEEE J. Se. Top. Quantum Electron. 22 1

    Article  Google Scholar 

  35. Ohzono T, Suzuki K, Yamaguchi T and Fukuda N 2013 Adv. Opt. Mater. 1 374

    Article  Google Scholar 

  36. Lin I T, Choi Y S, Wojcik C, Wang T, Kar-Narayan S and Smoukov S K 2020 Mater. Today 41 51

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Centre of Nanosciences, IIT Kanpur, for the access to some of the experimental facilities. This work is supported by the SERB early career grant (ECR/2015/000434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Verma.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Verma, A. Variable density wrinkling in polymer thin film by gradient stress induced in the elastomeric substrate. Bull Mater Sci 47, 94 (2024). https://doi.org/10.1007/s12034-024-03156-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-024-03156-w

Keywords

Navigation