Skip to main content
Log in

Preparation of porous graphene from electrochemically and sonoelectrochemically exfoliated graphene

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Porous graphene synergistically takes advantage of both graphene and porous materials, providing rich transfer channels for electrons/ions in many practical applications. In this study, porous graphene was prepared via a chemical etching reaction between graphene and hydrogen peroxide under hydrothermal conditions. Although graphene oxide is mainly used as the starting material for preparing porous graphene, the rapidly and eco-friendly prepared electrochemically exfoliated graphene (EEG) was used, which is desirable for large-scale production of porous graphene. Furthermore, the effect of applying ultrasonic during the electrochemical exfoliation was systematically investigated. Morphological studies revealed that applying ultrasonic during exfoliation would result in the fragmentation of graphene sheets into small pieces, which could be favourable for some applications. After the hydrothermal process, despite the restacking of graphene sheets, the formation of pores showed a dominant effect and increased the specific surface area from 8.67 to 30.08 m2 g−1. Besides, the aforementioned fragmentation of graphene sheets (under ultrasonic waves) resulted in the severe restacking of graphene sheets after the pore formation process, which is not desirable. Consequently, sonoelectrochemical exfoliation could be significantly beneficial for producing multilayer graphene, but not desirable for producing porous graphene.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hassanzadeh N, Sadrnezhaad S K and Chen G 2016 Electrochim. Acta 220 683

    Article  CAS  Google Scholar 

  2. Chen Z, An X, Dai L and Xu Y 2020 Nano Energy 73 104762

    Article  CAS  Google Scholar 

  3. Lu A K, Li H Y and Yu Y 2019 J. Mater. Chem. A 7 7852

    Article  CAS  Google Scholar 

  4. Liu F, Wang C, Sui X, Riaz M A, Xu M, Wei L et al 2019 Carbon Energy 1 173

    Article  Google Scholar 

  5. Su C Y, Lu A Y, Xu Y, Chen F R, Khlobystov A N and Li L J 2011 ACS Nano 5 2332

    Article  CAS  Google Scholar 

  6. Yu P, Lowe S E, Simon G P and Zhong Y L 2015 Colloid Interface Sci. 20 329

    CAS  Google Scholar 

  7. Hamra A A B, Lim H N, Chee W K and Huang N M 2016 Appl. Surf. Sci. 360 213

    Article  CAS  Google Scholar 

  8. Chen C W, Liu Z T, Zhang Y Z, Ye J S and Lee C L 2015 RSC Adv. 5 21988

    Article  CAS  Google Scholar 

  9. Zhang Y, Xu W, Xu X, Yang W, Li S, Chen J et al 2019 Nanoscale Horizons 4 452

    Article  CAS  Google Scholar 

  10. Lin Y, Watson K A, Kim J W, Baggett D W, Working D C and Connell J W 2013 Nanoscale 5 7814

    Article  CAS  Google Scholar 

  11. Jinlong L and Tongxiang L 2016 Chem. Phys. Lett. 659 61

    Article  Google Scholar 

  12. Mei X, Meng X and Wu F 2015 Nanostructures 68 81

    CAS  Google Scholar 

  13. Zhang C, Hui Z, Pan H, Zhu S, Zhang Q, Mao J et al 2019 J. Mater. Chem. A 7 4788

    Article  Google Scholar 

  14. Zhou Y, Bao Q, Ai L, Tang L, Zhong Y and Loh K P 2009 Chem. Mater. 21 2950

    Article  CAS  Google Scholar 

  15. Raj C J, Manikandan R, Thondaiman P, Sivakumar P, Savariraj A D, Cho W J et al 2021 Carbon 184 266

    Article  CAS  Google Scholar 

  16. Pingale A D, Owhal A, Katarkar A S, Belgamwar S U and Rathore J S 2021 Mater. Today: Proc. 44 467

    CAS  Google Scholar 

  17. Bera M, Gupta P and Maji P K 2017 J. Nanosci. Nanotechnol. 18 902

    Article  Google Scholar 

  18. Hassanzadeh N, Sadrnezhaad S K and Chen G 2016 Electrochim. Acta 208 188

    Article  CAS  Google Scholar 

  19. Aghamohammadi H, Hassanzadeh N and Eslami-Farsani R 2021 Ceram. Int. 47 22269

    Article  CAS  Google Scholar 

  20. Tao Y, Sui Z Y and Han B H 2020 J. Mater. Chem. A 8 6125

    Article  CAS  Google Scholar 

  21. Nazarian-Samani M, Haghighat-Shishavan S, Nazarian-Samani M, Kashani-Bozorg S F, Ramakrishna S and Kim K B 2021 Prog. Mater. Sci. 116 100716

    Article  CAS  Google Scholar 

  22. Zhang Y, Wan Q and Yang N 2019 Small 15 1903780

    Article  CAS  Google Scholar 

  23. Aghamohammadi H, Hassanzadeh N and Eslami-Farsani R 2021 Ceram. Int. 47 26598

    Article  CAS  Google Scholar 

  24. Liu T, Zhang L, Cheng B, Hu X and Yu J 2021 Cell Rep. Phys. Sci. 1 100215

    Article  Google Scholar 

  25. Lokhande A, Qattan I, Lokhande C and Patole S P 2020 J. Mater. Chem. A 8 918

    Article  CAS  Google Scholar 

  26. Xu Y, Lin Z, Zhong X, Huang X, Weiss N O, Huang Y et al 2014 Nat. Commun. 5 1

    Google Scholar 

  27. Bai Y, Yang X, He Y, Zhang J, Kang L, Xu H et al 2016 Electrochim. Acta 187 543

    Article  CAS  Google Scholar 

  28. Ji Q, Wang B, Zheng Y, Zeng F and Lu B 2021 Appl. Surf. Sci. 560 150052

    Article  CAS  Google Scholar 

  29. Aghamohammadi H and Eslami-Farsani R 2020 Ceram. Int. 46 28860

    Article  CAS  Google Scholar 

  30. Coroş M, Pogăcean F, Roşu M C, Socaci C, Borodi G, Mageruşan L et al 2016 Rsc. Adv. 6 2651

    Article  Google Scholar 

  31. Kim J, Park M, Shin H K, Choi J, Pant B, Saud P S et al 2015 Mater. Lett. 149 15

    Article  CAS  Google Scholar 

  32. Bian Y, Wang H, Hu J, Liu B, Liu D and Dai L 2020 Carbon 162 66

    Article  CAS  Google Scholar 

  33. Xu Y, Chen C Y, Zhao Z, Lin Z, Lee C, Xu X et al 2015 Nano Lett. 15 4605

    Article  CAS  Google Scholar 

  34. Yu M, Wu X, Zhang J, Meng Y, Ma Y, Liu J et al 2017 Electrochim. Acta 258 485

    Article  CAS  Google Scholar 

  35. Liu X, Liu L, Zhang J and Meng Q 2021 Colloids Surf. A: Physicochem. Eng. Asp. 618 126463

    Article  CAS  Google Scholar 

  36. Pishgahinejad S, Aghamohammadi H and Hassanzadeh N 2023 J. Electroanal. Chem. 931 117204

    Article  CAS  Google Scholar 

  37. Su C Y, Xu Y, Zhang W, Zhao J, Tang X, Tsai C H et al 2009 Chem. Mater. 21 5674

    Article  CAS  Google Scholar 

  38. Rajagopalan B and Chung J S 2014 Nanoscale Res. Lett. 9 1

    Article  CAS  Google Scholar 

  39. Tsirka K, Katsiki A, Chalmpes N, Gournis D and Paipetis A S 2018 Front. Mater. 5 37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafiseh Hassanzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pishgahinejad, S., Hassanzadeh, N. Preparation of porous graphene from electrochemically and sonoelectrochemically exfoliated graphene. Bull Mater Sci 46, 232 (2023). https://doi.org/10.1007/s12034-023-03078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03078-z

Keywords

Navigation