Skip to main content
Log in

A novel transparent hydrogel made of nanocellulose derived from oil palm residue: evaluation of its water retention and biodegradation properties

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Nanocellulose from oil palm empty fruit bunch residue was synthesized using TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl)-mediated oxidation to produce TEMPO-oxidized cellulose nanofibres (TOCNs). Nanocellulose was suspended in water at a concentration of 1% (w/v) and then crosslinked with HCl, citric acid and CaCl2 to as much as 20 mmol g–1 TOCNs to form a hydrogel. The hydrogel’s water-retention capacity was analysed along with its morphological, microscopic and biodegradable properties. Hydrogels with HCl crosslinkers are known to have a higher water-retention capacity than others. After 72 h of observation, all hydrogels retained more than 80% of their water. All hydrogels were known to be completely degraded in the soil after 21 days of observation with an abundance of microbes (2.25 × 106 CFU g–1 soil). The use of crosslinkers did not seem to affect the morphology of the hydrogels microscopically, but the freeze-dried results showed that hydrogels with citric acid crosslinkers seemed to be able to maintain a 3D shape in dry conditions compared to others. This research is expected to encourage the use of agricultural residues as a source of nanocellulose that can be applied to the agricultural sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kabir S M F, Sikdar P P, Haque B, Bhuiyan M A R, Ali A and Islam M N 2018 Prog. Biomater. 7 153

    Article  CAS  Google Scholar 

  2. Wang Y and Hsieh Y L 2004 J. Polym. Sci. Part A Polym. Chem. 42 4289

    Article  CAS  Google Scholar 

  3. Lyu S, Chang H, Fu F, Hu L, Huang J and Wang S 2016 J. Power Sources 327 438

    Article  CAS  Google Scholar 

  4. Hasija V, Sharma K, Kumar V, Sharma S and Sharma V 2018 Vacuum 157 458

    Article  CAS  Google Scholar 

  5. Guilherme R M, Aouada F A, Fajardo A R, Martins A F, Paulino A T, Davi M F T et al 2015 Eur. Polym. J. 72 365

    Article  CAS  Google Scholar 

  6. Azrina Z A Z, Beg M D H, Rosli M Y, Ramli R, Junadi N and Alam A K M M 2017 Carbohydr. Polym. 162 115

    Article  Google Scholar 

  7. Hastuti N, Kanomata K and Kitaoka T 2018 J. Polym. Environ. 26 3698

    Article  CAS  Google Scholar 

  8. Hastuti N, Kanomata K and Kitaoka T 2019 IOP Conf. Ser. Earth Environ. Sci. 359 1755

    Article  Google Scholar 

  9. Isogai A, Saito T and Fukuzumi H 2011 Nanoscale 3 71

    Article  CAS  Google Scholar 

  10. Yang K Y, Wloch D and Lee K Y 2021 RSC Adv. 11 28352

    Article  CAS  Google Scholar 

  11. Xu H, Liu Y, Xie Y, Zhu E, Shi Z, Yang Q et al 2019 Cellulose 26 8645

    Article  CAS  Google Scholar 

  12. Montesano F F, Parente A, Santamaria P, Sanino A and Serio F 2015 Agric. Agric. Sci. Proc. 4 451

    Google Scholar 

  13. Zhang W, Roy S, Assadpour E, Xinli C and Seid M J 2023 Adv. Colloid Interface Sci. 314 102886

    Article  CAS  Google Scholar 

  14. Barajas R M, Wong V, Little K, Patti A F and Garnier G 2022 J. Appl. Polym. Sci. 139 51495

    Article  Google Scholar 

  15. Cui X, Lee J J L and Chen W N 2019 Sci. Rep. 9 1

    Article  Google Scholar 

  16. Hastuti N, Agustini L, Indrawan D A and Pari G 2021 IOP Conf. Ser. Earth Environ. Sci. 914 012057

    Article  Google Scholar 

  17. Kasana R C, Salwan R, Dhar H, Dutt S and Gulati A 2008 Curr. Microbiol. 57 503

    Article  CAS  Google Scholar 

  18. Saito T and Isogai A 2004 Biomacromolecules 5 1983

    Article  CAS  Google Scholar 

  19. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Shalom T B et al 2016 Curr. Opin. Biotechnol. 39 76

    Article  CAS  Google Scholar 

  20. Lenji M A, Haghshenasfard M, Sefti M V, Salehi M B and Moghadam A M 2017 J. Pet. Sci. Eng. 160 160

    Article  Google Scholar 

  21. Hennink W E and van Nostrum C F 2012 Adv. Drug Deliv. Rev. 64 223

    Article  Google Scholar 

  22. Curvello R, Raghuwanshi V S and Garnier G 2019 Adv. Colloid Interface Sci. 267 47

    Article  CAS  Google Scholar 

  23. Lin N, Bruzesse C and Dufresne A 2012 ACS Appl. Mater. Interfaces 4 4948

    Article  CAS  Google Scholar 

  24. Zhang N, Zang G L, Shi C, Yu H Q and Sheng G P 2016 J. Hazard. Mater. 316 11

    Article  CAS  Google Scholar 

  25. Yoshimura T, Matsuo K and Fujioka R 2006 J. Appl. Polym. Sci. 99 3251

    Article  CAS  Google Scholar 

  26. Wang W and Wang A 2010 Adv. Mater. Res. 96 177

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was entirely supported by a grant from the Kurita Water and Environment Foundation, Japan, grant number 21PidO72-16. We appreciate the assistance of the Microbiology Laboratory of the Agency for Standardization and Instrumentation of Environment and Forestry, Ministry of Environment and Forestry, Republic of Indonesia, with the biodegradability test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Novitri Hastuti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hastuti, N., Agustini, L., Amin, Y. et al. A novel transparent hydrogel made of nanocellulose derived from oil palm residue: evaluation of its water retention and biodegradation properties. Bull Mater Sci 46, 214 (2023). https://doi.org/10.1007/s12034-023-03065-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03065-4

Keywords

Navigation