Skip to main content

Advertisement

Log in

Characterization of niobium carbide film deposited on commercially pure titanium by low-temperature plasma glow discharge

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

By using a low-temperature plasma glow discharge with argon gas and C2H2 as a carbon source, niobium carbide thin films were applied on a commercially pure titanium substrate. The coatings were deposited in three different deposition times: Group-1 with 2-h deposition time, group-2 with 4-h deposition time and group-3 with 6-h deposition time. The films were analysed for phase composition, microstructure, surface morphology, roughness and wettability as a function of deposition time. The X-ray diffraction (XRD) patterns suggest the formation of various phases (either orthorhombic-Nb2C or cubic-NbC). It is worth noting that deposition time affects the crystal structure of both phases, with Nb2C having a more noticeable effect due to a noticeable shift in the related XRD pattern. This might be attributable to changes in carbon content and sputtered niobium ions throughout the deposition process when the chamber gas conditions were verified to form phase pure NbC. The scanning electron microscopy images of the deposited NbC films display a microstructure that shows good regularity and homogeneity; a uniform morphology is revealed with an agglomerating characteristic of the material. Increased deposition time results in less surface roughness, according to atomic force microscope analysis. In contrast, the measurements of the water contact angle revealed only a little improvement in wettability as the deposition period increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Esposito M, Worthington H V, Thomsen P and Coulthard P 2003 Cochrane Database Syst. Rev. CD003815

  2. Hille G 1966 J. Mater. 1 373

    CAS  Google Scholar 

  3. Brånemark P I, Zarb G A and Albrektsson T (eds) 1985 Tissue-integrated prostheses. Osseointegration in clinical dentistry (Chicago: Quintessence)

  4. Vasilev K, Poh Z, Kant K, Chan J, Michelmore A and Losic D 2010 Biomaterials 31 532

    Article  CAS  Google Scholar 

  5. Diebold U 2003 Surf. Sci. Rep. 48 53

    Article  CAS  Google Scholar 

  6. Puckett S D, Taylor E, Raimondo T and Webster T J 2010 Biomaterials 31 706

    Article  CAS  Google Scholar 

  7. Dale G R, Hamilton J W J, Dunlop P S M, Lemoine P and Byrne J A 2009 J. Nanosci. Nanotechnol. 9 4215

    Article  CAS  Google Scholar 

  8. Le Guéhennec L, Soueidan A, Layrolle P and Amouriq Y 2007 Dent. Mater. 23 844

    Article  Google Scholar 

  9. Sobiecki J R and Wierzchoń T 2005 Vacuum 79 203

    Article  CAS  Google Scholar 

  10. Czyrska-Filemonowicz A, Buffat P A, Łucki M, Moskalewicz T, Rakowski W, Lekki J et al 2005 Acta Mater. 53 4367

    Article  CAS  Google Scholar 

  11. Amriou T, Bouhafs B, Aourag H, Khelifa B, Bresson S and Mathieu C 2003 Physica B Condens. Matter 325 46

    Article  CAS  Google Scholar 

  12. Nedfors N, Tengstrand O, Lewin E, Furlan A, Eklund P, Hultman L et al 2011 Surf. Coat. Technol. 206 354

    Article  CAS  Google Scholar 

  13. Xu Z, Yate L, Qiu Y, Aperador W, Coy E, Jiang B et al 2019 Mater. Sci. Eng. C 96 166

    Article  CAS  Google Scholar 

  14. Braic M, Braic V, Balaceanu M, Vladescu A, Zoita C N, Titorencu I et al 2011 Thin Solid Films 519 4064

    Article  CAS  Google Scholar 

  15. Al-Khafaji A M and Hamad T I 2020 J. Res. Med. Dent. Sci. 8 81

    Google Scholar 

  16. Wierzchoń T, Czarnowska E, Grzonka J, Sowińska A, Tarnowski M, Kamiński J et al 2015 Appl. Surf. Sci. 334 74

    Article  Google Scholar 

  17. Boyd A R, Rutledge L, Randolph L D and Meenan B J 2015 Mater. Sci. Eng. C 46 290

    Article  CAS  Google Scholar 

  18. Liu X, Chu P K and Ding C 2004 Mater. Sci. Eng. R Rep. 47 49

    Article  Google Scholar 

  19. Zhang K, Wen M, Cheng G, Li X, Meng Q N, Lian J S et al 2014 Vacuum 99 233

    Article  CAS  Google Scholar 

  20. Jansson U and Lewin E 2013 Thin Solid Films 536 1

    Article  CAS  Google Scholar 

  21. Souto M V M, Araujo C P B D, Lima M J S, Borges F M M, Gomes U U and Souza C P D 2018 Mater. Res. 21 1

    Article  Google Scholar 

  22. Braic M, Balaceanu M and Braic V, 2010 In: 2008 International Semiconductor Conference p 177

  23. Pei Y T, Galvan D and De Hosson J T M 2005 Acta Mater. 53 4505

    Article  CAS  Google Scholar 

  24. Rupp F, Gittens R A, Scheideler L, Marmur A, Boyan B D, Schwartz Z et al 2014 Acta Biomater. 10 2894

    Article  CAS  Google Scholar 

  25. Zhou W, Zhong X, Wu X, Yuan L, Zhao Z, Wang H et al 2006 Surf. Coat. Technol. 200 6155

    Article  CAS  Google Scholar 

  26. Morra M, Cassinelli C, Torre E and Iviglia G 2018 Clin. Exp. Dent. Res. 4 196

    Article  Google Scholar 

  27. Quéré D 2008 Annu. Rev. Mater. Res. 38 71

    Article  Google Scholar 

  28. Robert N W 1936 Ind. Eng. Chem. 28 988

    Article  Google Scholar 

  29. Marmur A 2008 Langmuir. 24 7573

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitham T Al Qaysi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Qaysi, H.T., Hamad, T.I. & Al Zubaidy, T.L. Characterization of niobium carbide film deposited on commercially pure titanium by low-temperature plasma glow discharge. Bull Mater Sci 46, 135 (2023). https://doi.org/10.1007/s12034-023-02966-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02966-8

Keywords

Navigation