Skip to main content
Log in

Effects of doping iron on the colouring properties of copper chromate pigment

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Iron-doped copper chromate with (FexCu1–xCr2O4) as a black ceramic decoration pigment is successfully synthesized using a solid-state synthesis method with a pure oxide precursor. The powdered pigment was analysed using X-ray diffraction (PXRD), scanning electron microscopy (SEM), Fourier transform infrared analysis, ultra violet–visible and colour-measuring instruments. The calcination temperature was determined from literature at 1350°C for 3 h. The result of the PXRD indicated that the sample contains a spinel structure; moreover, the doping of iron caused the diffractogram peak to shift towards the lower angle due to the small ionic radius of iron compared to the replaced copper. The micrograph of the SEM indicated that the powder particles are well dispersed, and the energy dispersive spectroscopy result confirmed that all samples appear in their purest form. In addition, as the doped iron increases the colour axis of the pigment, L* tends to be more blackish, while the b* value turns more towards blue. However, the intensity of the red colour a* increases till half of the total copper is replaced by the doped iron and the optimal result was achieved which is comparable with commercial black pigment at Fe0.5Cu0.5Cr2O4, having L* = 32.96.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Vladimir I V and Nina I R 2017 Conf. Ency. Self-Prop. High-Temp. Synth. High-Temp. Syn. 1 358

    Google Scholar 

  2. Divya S and Subrata D 2020 Opt. Mater. 109 110410

    Article  CAS  Google Scholar 

  3. Wendusu T M and Nobuhito I 2014 J. Asian Ceram. Soc. 2 195

    Article  Google Scholar 

  4. Galuh S, Retno K, Aafian N, Fiqhi F, Alvin M H, Muhamad I A et al 2020 J. Mater. Res. Tech. 9 8497

    Article  Google Scholar 

  5. Liliya F and Alexandar P 2016 Chemist. Chem. Tech. 10 210

    Google Scholar 

  6. Melo D, Vieira F T G, Costa T C C, Soledade L E B, Pakocimas C A, Melo D M A et al 2013 Dye Pigm. 98 459

    Article  CAS  Google Scholar 

  7. Yongjoon Y, John M, Kathy N, Kyung-J H, Chulmin C, Youngjin K et al 2019 ACS Appl. Energy Mat. 2 882

    Article  Google Scholar 

  8. Louisiane V, Olivier D, Gwenaelle R, Emese R, Amelie J, Delphine C et al 2016 Phys. Chem. Miner. 42 33

    Google Scholar 

  9. Michele D, Chiara Z, Matteo A, Giuseppe C, Luciana M, Mario T et al 2013 Ceram. Int. 39 9533

    Article  Google Scholar 

  10. Robin J H C 2002 C R Chim. 5 7

    Article  Google Scholar 

  11. Qing F G, Xin Z, Xiang H G and Gang L 2011 J. Am. Ceram. Soc. 94 827

    Article  Google Scholar 

  12. Elham P, Zahra R and Mehdi G 2019 Prog. Org. Coat. 132 21

    Article  Google Scholar 

  13. Maslennikova G 2001 Glass and Ceram. 58 216

    Article  CAS  Google Scholar 

  14. Nirmal S T, Iyandurai N, Yuvaraj S and Sundararajan M 2020 Mater. Res. Express 7 046104

    Article  Google Scholar 

  15. Jeseentharani V, Mary G, Jeyaraj B, Dayalan A and Nagaraja K S 2014 J. Exp. Nanosci. 8 358

    Article  Google Scholar 

  16. Frolova L, Pivovarov A and Butyrina T 2017 Pigm. Res. Tech. 46 356

    Article  CAS  Google Scholar 

  17. Irena M, Petr H, Barbara P, Simona K, Alice M, Jiri P et al 2015 Mater. Sci. Eng. B 195 66

    Article  Google Scholar 

  18. Bappi P, Bishal B, Debraj D P, Siddhartha S D and Satyananda B 2015 J. Alloys Compd. 648 629

    Article  Google Scholar 

  19. Zhiqiang H, Ying Q, Hongru Z, Jiao K, Shangri Z and Hong G 2011 Adv. Mater. Res. 284 974

    Google Scholar 

  20. Akhtar M J and Younas M 2021 Solid State Sci. 14 1536

    Article  Google Scholar 

  21. Shankha S A, Shilpi G and Rajaram B 2014 Indust. Eng. Chem. Res. 53 20056

    Article  Google Scholar 

  22. Mixing D, Yi D, Zhongtao C, Zhongfu L, Kai Y, Xingjie L et al 2017 Appl. Phys. Appl. Phys. A 123 575

    Article  Google Scholar 

  23. Muhammad A, Muhammad U, Muhammad A A, Sofia J, Saqib A, Iftikhar A et al 2021 J. Alloys Compd. 865 158953

    Article  Google Scholar 

  24. Gilabert J, Palacios M D, Sanz V and Mestre S 2016 Ceram. Int. 42 1

    Article  Google Scholar 

  25. Jun Z, Dazhi G, Yi Z and Pinggen R 2020 Mater. Chem. Phys. 244 122695

    Article  Google Scholar 

  26. Matthew C 2017 J. Surf. Coat. Aus. 10 30

    Google Scholar 

  27. Nikam A V, Prasad B L V and Kulkarni A A 2018 R Soc. Chem. 35 1

    Google Scholar 

  28. Eticha Z G, Hernandez R E R, Olu F E, Yimam A, Hussainova I and Alemayehu E 2022 J. Sust. Met. 8 218

    Article  Google Scholar 

  29. Kalyan G, Monotosh B, Debasish M, Akbar H, Trilochan B, Mrinmy N et al 2021 J. Alloys Compd. 867 15794

    Google Scholar 

  30. Yathisha R O, Nayaka Y A, Manjunatha P, Purushothama H T, Vinay M M and Basavarajappa K V 2019 Phys. E Low-Dimen. Syst. Nanost. 208 257

    Article  Google Scholar 

  31. Leal L R F, Guerra Y, Padrón-Hernández E, Rodrigues A R, Santos F E P and Peña-Garcia R 2019 Mater. Lett. 236 547

    Article  CAS  Google Scholar 

  32. Monisha P, Priyadharshini P, Gomathi S S and Pushpanathan K 2021 J. Phys. Chem. Solids 148 109654

    Article  CAS  Google Scholar 

  33. Reddy B J and Ray L F 2005 Spectrochim. Acta - Part A 61 1721

    Article  Google Scholar 

  34. Qingfen G, Xin Z, Xianghu G, Shengrong Y and Gang L 2021 J. Sol-Gel Sci. Technol. 61 281

    Google Scholar 

  35. Mingquan Y, Aijun H, Zhoushuo C, Jianfei C and Chen W 2013 J. Adv. Matter. Res. 602 71

    Google Scholar 

  36. Bo H, Yi D, Huixiang X, Jingchen M, Chuanbing C and Minzing D 2021 Trans. Ind. Ceram. Soc. 80 103

    Article  Google Scholar 

  37. Zhingtao C, Yi D, Zhongfu L, Dandan S and Chaofeng Z 2015 Ceram. Int. 41 9455

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Bio and Emerging Technology Institute, Addis Ababa, Ethiopia, Indian National Science Academy (INSA), and the National Metallurgical Laboratory (NML), Jamshedpur, India. We also would like to acknowledge Addis Ababa University and the Centre for Research in Nanotechnology and Science (CRNTS), Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology, Bombay, for characterization support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zekarias G Eticha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eticha, Z.G., Alex, T.C., Olu, F.E. et al. Effects of doping iron on the colouring properties of copper chromate pigment. Bull Mater Sci 46, 95 (2023). https://doi.org/10.1007/s12034-023-02939-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02939-x

Keywords

Navigation