Skip to main content
Log in

Enhanced biocompatibility and bactericidal properties of hydrogels based on collagen–polyurethane–aluminium MOFs for biomedical applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Composite materials in hydrogels state based on collagen and metal-organic frameworks (MOFs) have recently gained attention in tissue engineering due to the enhancement of their mechanical and bactericidal properties. In this work, composite hydrogels based on collagen crosslinked with polyurethane (derived from HDI or IPDI) and MOFs with aluminium as metallic center (MIL53-Al and BHET-Al MOFs) were synthesized by the microemulsion method. The physicochemical properties of these materials were characterized by WAXS, ATR-FTIR, TGA, reticulation by ninhydrin assay, degradation profiles varying pH and using a proteolytic medium, scanning electron microscopy and elemental mapping. At the same time, their in-vitro biocompatibility was tested by the hemolysis test, metabolic activity of fibroblasts by MTT assay, and the inhibition growth of pathogens like E. coli. It was found that the entanglement of collagen, polyurethane and MOFs was made by hydrogen and coordination bonds promoted by the chemical structure of the MOF, leading to a semi-crystalline rough surface with interconnected porosity and aggregates of round-shape, enhancing the mechanical, resistance to thermal degradation and biocompatibility. Interestingly, the better dispersion of MIL53-Al in the collagenic matrix with crosslinker based on HDI leads to a hemolytic capacity of 1.2%, a fibroblast viability of 169.4%, and an E. coli inhibition growth of 96.7%, a potential biomaterial to be used as a wound dressing for chronic wounds in the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Walles H and Walles T 2011 in Comprehensive biomaterials P Ducheyne (ed) (Oxford: Elsevier) p 361

  2. Asghari F, Samiei M, Adibkia K, Akbarzadeh A and Davaran S 2017 Artif. Cells Nanomed. Biotechnol. 45 185

  3. Zhao P, Gu H, Mi H, Rao C, Fu J and Turng L S 2018 Front Mech. Eng. 13 107

    Article  Google Scholar 

  4. Pereira P, Frias A M, Oliveira J M, Espregueira-Mendes J and Reis R L 2011 Arthrosc. J. Arthrosc. Relat. Surg. 27 1706

    Article  Google Scholar 

  5. Chiu L L Y, Chu Z, Radisic M and Mozafari M (eds) 2017 Reference module in materials science and materials engineering (Elsevier) p 1

  6. Maitra J and Kumar Shukla V 2014 Am. J. Polym. Sci. 4 25

    Google Scholar 

  7. Yoo J S, Kim Y J, Kim S H and Choi S H 2011 Korean J. Thorac. Cardiovasc. Surg. 44 197

    Article  Google Scholar 

  8. Claudio-Rizo J A, Mendoza-Novelo B, Delgado J, Castellano L E and Mata-Mata J L 2016 Biomed. Mater. 11 035016

    Article  Google Scholar 

  9. Saldin L T, Cramer M C, Velankar S S, White L J and Badylak S F 2017 Acta Biomater. 49 1

    Article  CAS  Google Scholar 

  10. Hosseini M and Shafiee A 2021 Small 17 2101384

    Article  CAS  Google Scholar 

  11. Ricard-Blum S 2011 Cold Spring Harb. Perspect. Biol. 3 a004978

    Article  Google Scholar 

  12. Mendoza-Novelo B, Mata-Mata J L, Vega-González A, Cauich-Rodríguez J V and Marcos-Fernández Á 2014 J. Mater. Chem. B 2 2874

    Article  CAS  Google Scholar 

  13. Singh B, Fleury C, Jalalvand F and Riesbeck K 2012 Microbiol. Rev. 36 1122

    CAS  Google Scholar 

  14. Liu J, Wu D, Zhu N, Wu Y and Li G 2021 Trends Food Sci. Technol. 109 413

    Article  CAS  Google Scholar 

  15. Liu H, Peng H, Xin Y and Zhang J 2019 Polym. Chem. 10 2263

    Article  CAS  Google Scholar 

  16. Singh N, Qutub S and Khashab N M 2021 J. Mater. Chem. B 9 5925

    Article  CAS  Google Scholar 

  17. Peto M V 2010 Rejuvenation Res. 13 589

    Article  CAS  Google Scholar 

  18. Cabrera-Munguia D A, León-Campos M I, Claudio-Rizo J A, Solís-Casados D A, Flores-Guia T E and Cano Salazar L F 2021 Bull. Mater. Sci. 44 245

    Article  CAS  Google Scholar 

  19. Claudio-Rizo J A, Rangel-Argote M, Castellano L E, Delgado J, Mata-Mata J L and Mendoza-Novelo B 2017 Mater. Sci. Eng. C 79 793

    Article  CAS  Google Scholar 

  20. Claudio-Rizo J A, González-Lara I A, Flores-Guía T E, Cano-Salazar L F, Cabrera-Munguía D A and Becerra-Rodríguez J J 2020 Int. J. Biol. Macromol. 156 27

    Article  CAS  Google Scholar 

  21. Claudio-Rizo J A, Rangel-Argote M, Muñoz-González P U, Castellano L E, Delgado J, González-García G et al 2016 J. Mater. Chem. B 4 6497

    Article  CAS  Google Scholar 

  22. Lopéz-Martínez E E, Claudio-Rizo J A, Caldera-Villalobos M, Becerra-Rodríguez J J, Cabrera-Munguia D A, Cano-Salazar L F et al 2022 Macromol. Res. 30 375

    Article  Google Scholar 

  23. Nair M, Johal R K, Hamaia S W, Best S M and Cameron R E 2020 Biomaterials 254 120109

    Article  CAS  Google Scholar 

  24. Hwang M-N and Ederer G M 1975 J. Clin. Microbiol. 1 114

    Article  CAS  Google Scholar 

  25. Lohrasbi S, Mirzaei E, Karimizade A, Takallu S and Rezaei A 2020 Cellulose 27 927

    Article  CAS  Google Scholar 

  26. León-Campos M I, Claudio-Rizo J A, Rodriguez-Fuentes N, Cabrera-Munguia D A, Becerra-Rodríguez J J, Herrera-Guerrero A et al 2021 J. Polym. Res. 28 291

    Article  Google Scholar 

  27. Liang Y, Zhao X, Hu T, Chen B, Yin Z, Ma P X et al 2019 Small 15 1900046

    Article  Google Scholar 

  28. Zin M H, Abdan K and Norizan M N 2019 in Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites M Jawaid, M Thariq and N Saba (eds) (Sawston: Woodhead Publishing) p 1

  29. Mercy J L and Prakash S 2019 in Modelling of damage processes in biocomposites, fibre-reinforced composites and hybrid composites M Jawaid, M Thariq and N Saba (eds) (Sawston: Woodhead Publishing) p 133

  30. Hao X, Liu H, Xie Y, Fang C and Yang H 2013 Colloid Polym. Sci. 291 1749

    Article  CAS  Google Scholar 

  31. Yuan T, Xiao Y, Fan Y, Liang J and Zhang X 2017 Polym. Test. 62 348

    Article  CAS  Google Scholar 

  32. Claudio-Rizo J A, Hernandez-Hernandez N G, Cano-Salazar L F, Flores-Guia T E, de la Cruz-Durán F N, Cabrera-Munguia D A et al 2021 J. Appl. Polym. Sci. 138 49739

    Article  CAS  Google Scholar 

  33. Caldera-Villalobos M, Cabrera-Munguía D A, Becerra-Rodríguez J J and Claudio-Rizo J A 2022 RSC Adv. 12 3672

    Article  CAS  Google Scholar 

  34. Claudio-Rizo J A, Carrillo-Cortés S L, Becerra-Rodríguez J J, Caldera-Villalobos M, Cabrera-Munguía D A and Burciaga-Montemayor N G 2022 J. Mater. Res. 37 636

    Article  CAS  Google Scholar 

  35. Pandey A, Dhas N, Deshmukh P, Caro C, Patil P, García-Martín M L et al 2020 Coord. Chem. Rev. 409 213212

    Article  CAS  Google Scholar 

  36. Christodoulou I, Serre C and Gref R 2020 in Metal-organic frameworks for biomedical applications M Mozafari (ed) (Sawston: Woodhead Publishing) p 467

  37. Anane R and Creppy E E 2001 Hum. Exp. Toxicol. 20 477

    Article  CAS  Google Scholar 

  38. Radziun E, Dudkiewicz Wilczyńska J, Książek I, Nowak K, Anuszewska E L, Kunicki A et al 2011 Toxicol. In Vitro 25 1694

    Article  CAS  Google Scholar 

  39. Wyszogrodzka G, Marszałek B, Gil B and Dorozyński P 2016 Drug Discov. 21 1009

    CAS  Google Scholar 

  40. Kumar P, Anand B, Tsang Y F, Kim K H, Khullar S and Wang B 2019 Environ. Res. 176 108488

    Article  CAS  Google Scholar 

  41. Cabrera-Munguia D A, Claudio-Rizo J A, Aguayo-Morales H and Martínez-Mora E I 2022 Asian J. Basic Sci. Res. 4 60

    Article  Google Scholar 

Download references

Acknowledgements

DACM thanks to COECYT Coahuila (Consejo Estatal de Ciencia y Tecnología del Estado de Coahuila) for the given financial support for the development of this case study, with FONCYT (Fondo para la Investigación Científica y Tecnológica) program for the COAH-2021-C15-C003 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis A Cabrera-Munguia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera-Munguia, D.A., Claudio-Rizo, J.A., Becerra-Rodríguez, J.J. et al. Enhanced biocompatibility and bactericidal properties of hydrogels based on collagen–polyurethane–aluminium MOFs for biomedical applications. Bull Mater Sci 46, 100 (2023). https://doi.org/10.1007/s12034-023-02930-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02930-6

Keywords

Navigation