Skip to main content
Log in

Effect of reaction pH on the microstructural, optical and electrical behaviour of ZnO/CuO heterostructured nanocomposite films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

CuO films and ZnO/CuO heterostructured nanocomposite films were synthesized by a series of chemical reactions at different pH values based on the hydrothermal and SILAR (successive ionic layer adsorption and reaction) methods. The ultimate purpose of this work is to explore the impacts of solution pH value and ZnO-based heterostructure on the structural, optical and electrical features of CuO films using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), transmittance spectrum, current–voltage (IV) measurements and capacitance–conductance (C–G) measurements in 300–600 K temperature range and 20 Hz–1.5 MHz frequency range. XRD analysis revealed that the crystallite size and strain lattice parameters decrease with the increase in pH value without affecting the crystalline structure of the synthesized films. SEM images revealed the regular growth of ZnO structure without any deterioration in the CuO substrate layer, where an increase in the thickness of the formed rods was observed with the increase in reaction pH value. Transmittance dropped greatly with the formation of heterojunction from about 40% (for CuO) to about 1% (for ZnO/CuO) in the visible range followed by a crystallite size-induced change in bandgap from 2.29 to 2.32 eV (for CuO) and from 2.03 to 2.11 eV (for ZnO/CuO). The increase in pH from 11.0 to 11.2 increased the room-temperature resistance of ZnO/CuO composites from 377 to 474 MΩ, the ideality factor from 4.41 to 4.68 and the barrier height from 0.74 to 0.83 eV. It can be deduced that reaction pH value is an important synthesis parameter that can tune the structural, morphological, optical and electrical properties of ZnO/CuO nanocomposite films for advanced industrial or technological implementations by controlling the nucleation and crystal growth rates during chemical synthesis processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Morales-Mendoza J E and Paraguay-Delgado F 2021 Mater. Lett. 291 129494

    Article  CAS  Google Scholar 

  2. Mohamed R M and Ismail A A 2021 Ceram. Int. 47 9659

    Article  CAS  Google Scholar 

  3. Oliveira M C, Fonseca V S, Andrade Neto N F, Ribeiro R A P, Longo E, de Lazaro S R et al 2020 Ceram. Int. 46 9446

    Article  CAS  Google Scholar 

  4. Velayi E and Norouzbeigi R 2019 Ceram. Int. 45 16864

    Article  CAS  Google Scholar 

  5. Mahajan P, Singh A and Arya S 2020 J. Alloys Compd. 814 152292

    Article  CAS  Google Scholar 

  6. Karaduman Er I, Çağırtekin A O, Çorlu T, Yildirim M A, Ateş A and Acar S 2019 Bull. Mater. Sci. 42 32

    Article  Google Scholar 

  7. Terasako T, Murakami T, Hyodou A and Shirakata S 2015 Sol. Energy Mater. Sol. Cells 132 74

    Article  CAS  Google Scholar 

  8. Abraham N and Aseena S 2021 Mater. Today Proc. 43 3698

    Article  CAS  Google Scholar 

  9. Qin C, Wang Y, Gong Y, Zhang Z and Cao J 2019 J. Alloys Compd. 770 972

    Article  CAS  Google Scholar 

  10. Hong K S, Kim J W, Bae J S, Hong T E, Jeong E D, Jin J S et al 2017 Phys. B: Condens. Matter 504 103

    Article  CAS  Google Scholar 

  11. Soltabayev B, Çağırtekin A O, Mentbayeva A, Yıldırım M A and Acar S 2021 Thin Solid Films 734 138846

    Article  CAS  Google Scholar 

  12. Kale S S, Mane R S, Chung H, Yoon M Y, Lokhande C D and Han S H 2006 Appl. Surf. Sci. 253 421

    Article  CAS  Google Scholar 

  13. Shinde R S, Khairnar S D, Patil M R, Adole V A, Koli P B and Deshmane V V 2022 J. Inorg. Organomet. Polym. Mater. 62

  14. Nami M, Sheibani S and Rashchi F 2021 Mater. Sci. Semicond. Process. 135 106083

    Article  CAS  Google Scholar 

  15. Zayyoun N, Bahmad L, Laânab L and Jaber B 2016 Appl. Phys. A 122 488

    Article  Google Scholar 

  16. Çayır Taşdemirci T 2020 Electron. Mater. Lett. 16 239

    Article  Google Scholar 

  17. Karaduman Er I, Yıldız İ A, Bayraktar T, Acar S and Ateş A 2021 J. Mater. Sci. Mater. Electron. 32 8122

    Article  CAS  Google Scholar 

  18. Abdulrahman A F, Ahmed S M, Hamad S M, Almessiere M A, Ahmed N M and Sajadi S M 2021 Chin. J. Phys. 71 175

    Article  CAS  Google Scholar 

  19. Yüksel M, Pennings J R, Bayansal F and Yeow J T W 2020 Phys. B Condens. Matter 599 412578

    Article  Google Scholar 

  20. Daoudi O, Qachaou Y, Raidou A, Nouneh K, Lharch M and Fahoume M 2019 Superlattices Microstruct. 127 93

    Article  CAS  Google Scholar 

  21. Mageshwari K and Sathyamoorthy R 2013 Mater. Sci. Semicond. Process. 16 337

    Article  CAS  Google Scholar 

  22. Bayansal F, Şahin B, Yüksel M, Biyikli N, Çetinkara H A and Güder H S 2013 J. Alloys Compd. 566 78

    Article  CAS  Google Scholar 

  23. Gençyılmaz O and Taşköprü T 2017 J. Alloys Compd. 695 1205

    Article  Google Scholar 

  24. Dinc S, Şahin B and Kaya T 2020 Mater. Sci. Semicond. Process. 105 104698

    Article  CAS  Google Scholar 

  25. Ravi Dhas C, Alexander D, Jennifer Christy A, Jeyadheepan K, Moses Ezhil Raj A et al 2014 Asian J. Appl. Sci. 7 671

    Article  Google Scholar 

  26. Ozutok F, Karaduman I, Demiri S and Acar S 2018 J. Electron. Mater. 47 2648

    Article  CAS  Google Scholar 

  27. Altun B, Karaduman Er I, Çağırtekin A O, Ajjaq A, Sarf F and Acar S 2021 Appl. Phys. A 127 687

    Article  CAS  Google Scholar 

  28. Rai R, Triloki T and Singh B K 2016 Appl. Phys. A 122 774

    Article  Google Scholar 

  29. Altun B, Ajjaq A, Çağırtekin A O, Karaduman Er I, Sarf F and Acar S 2021 Ceram. Int. 47 27251

    Article  CAS  Google Scholar 

  30. Şahin B and Kaya T 2021 Mater. Sci. Semicond. Process. 121 105428

    Article  Google Scholar 

  31. Arandhara G, Bora J and Saikia P K 2020 Mater. Chem. Phys. 241 122277

    Article  CAS  Google Scholar 

  32. Hussein Ahmed S, Bakiro M and Alzamly A 2019 Nano-Struct. Nano-Objects 20 100400

    Article  Google Scholar 

  33. Visalakshi S, Kannan R, Valanarasu S, Kathalingam A and Rajashabala S 2016 Mater. Res. Innov. 21 146

    Article  Google Scholar 

  34. Daira R, Kabir A, Boudjema B and Sedrati C 2020 Solid State Sci. 104 106254

    Article  CAS  Google Scholar 

  35. Shariffudin S, Khalid S S, Sahat N M, Sarah M S P and Hashim H 2015 IOP Conf. Ser. Mater. Sci. Eng. 99 012007

    Article  Google Scholar 

  36. Chvostová D, Dejneka A, Hubička Z, Churpita A, Bykov P, Jastrabík L et al 2011 Phys. Status Solidi 208 2140

    Article  Google Scholar 

  37. Karaduman Er I, Çağırtekin A O, Ajjaq A, Yıldırım M A, Ateş A and Acar S 2021 J. Mater. Sci. Mater. Electron. 32 13594

    Article  Google Scholar 

  38. Bodade A B, Taiwade M A and Chaudhari G N 2017 J. Appl. Pharm. Sci. 5 30

    CAS  Google Scholar 

  39. Goraya N and Singh S 2016 MATEC Web Conf. 57 01007

    Article  Google Scholar 

  40. Zoolfakar A S, Abdul Rani R, Morfa A J, O’Mullane A P and Kalantar-Zadeh K 2014 J. Mater. Chem. C 2 5247

    Article  CAS  Google Scholar 

  41. Rashad M, Rüsing M, Berth G, Lischka K and Pawlis A 2013 J. Nanomater. 714853

  42. Sriyutha Murthy P, Venugopalan V P, Arunya D D, Dhara S, Pandiyan R and Tyagi A K 2011 Int. Conf. Nanosci. Eng. Technol. 580

  43. Çağırtekin A O, Ajjaq A, Barin Ö and Acar S 2021 Phys. Scr. 96 115807

    Article  Google Scholar 

  44. Kaphle A, Echeverria E, Mcllroy D N and Hari P 2020 RSC Adv. 10 7839

    Article  CAS  Google Scholar 

  45. Attallah M A, Elrasasi T Y, Shash N M, El-Shaarawy M G, El-Tantawy F and El-Shamy A G 2021 Mater. Sci. Semicond. Process. 126 105653

    Article  CAS  Google Scholar 

  46. Gupta R K, Ghosh K and Kahol P K 2010 Physica E 42 1509

    Article  CAS  Google Scholar 

  47. Kanani M V, Dhruv D, Rathod H K, Rathod K N, Rajyaguru B, Joshi A D et al 2019 Scr. Mater. 165 25

    Article  CAS  Google Scholar 

  48. Karaduman Er I, Çağırtekin A O, Artuç M and Acar S 2021 J. Mater. Sci. Mater. Electron. 32 1677

    Article  Google Scholar 

  49. Polat O, Coskun M, Coskun F M, Zlamal J, Durmus Z, Caglar M et al 2020 Mater. Res. Bull. 124 110759

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irmak Karaduman Er.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Er, I.K., Ajjaq, A., Ateş, A. et al. Effect of reaction pH on the microstructural, optical and electrical behaviour of ZnO/CuO heterostructured nanocomposite films. Bull Mater Sci 45, 212 (2022). https://doi.org/10.1007/s12034-022-02803-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02803-4

Keywords

Navigation