Skip to main content
Log in

Investigation of crystal structure confinement and optical attributes of monoclinic–tetragonal Zirconia nanocrystals via chemical co-precipitation technique

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Mn-activated ZrO2 nanocrystal was successfully synthesized using the chemical co-precipitation technique. Nanocrystals have been widely studied in terms of their structural and optical aspects. X-ray diffraction (XRD) analysis confirmed the formation of monoclinic and tetragonal phases in pure and Mn-doped ZrO2 nanocrystals. The unit cell structure of m-ZrO2 and t-ZrO2 has been modelled using the Rietveld refinement crystallographic data. A photoluminescence (PL) study revealed emission intensity peaks at 378 nm for pure ZrO2 and 380 nm for Mn-doped ZrO2 nanocrystal under 280 nm excitation. A significant red shift was observed in Mn-doped ZrO2 nanocrystal due to the oxygen vacancy. The incorporation of Mn to ZrO2 nanocrystals reduced the optical band gap from 5.07 to 2.02 eV. The morphological analysis revealed that the typical particle sizes were in the nanoscale range, with 38 nm for pure ZrO2 and 70 nm for Mn-doped ZrO2 nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kumar S and Ojha A K 2016 Mater. Chem. Phys. 169 13

    Article  CAS  Google Scholar 

  2. Reddy C V, Reddy I N, Akkinepally B, Harish V V N, Reddy K R and Jaesool S 2010 Ceram. Int. 45 15298

    Article  Google Scholar 

  3. Berlin I J, Lekshmy S S, Ganesan V, Thomas P V and Joy K 2014 Thin Solid Films 550 199

    Article  CAS  Google Scholar 

  4. French R H, Glass S J, Ohuchi F S, Xu Y-N and Ching W Y 1994 Phys. Rev. B 49 5133

    Article  CAS  Google Scholar 

  5. Miyazaki S 2002 Appl. Surf. Sci. 190 66

    Article  CAS  Google Scholar 

  6. Pucci A, Clavel G, Willinger M-G, Zitoun D and Pinna N 2009 J. Phys. Chem. C 113 12048

    Article  CAS  Google Scholar 

  7. Anitha V S, Lekshmy S S and Joy K 2016 J. Alloys Compd. 675 331

    Article  CAS  Google Scholar 

  8. Liang J, Deng Z, Jiang X and Li Y 2002 Inorg. Chem. 41 3602

    Article  CAS  Google Scholar 

  9. García-Hipólito M, Falcony C, Aguilar-Frutis M A and Azorín-Nieto J 2001 Appl. Phys. Lett. 79 4361

    Article  Google Scholar 

  10. Sambasivam S, Muralee Gopi C V V, Maram P S, Arbi H M, Narayanaswamy V, Kamzin A S et al 2021 J. Solid State Chem. 294 121872

    Article  CAS  Google Scholar 

  11. Shionoya S 1998 in: D R Vij (ed) Luminescence of solids (New York: Plenum Press)

    Google Scholar 

  12. Blasse G and Grabmaier B C 1994 Luminescent materials. Springer, Berlin

    Book  Google Scholar 

  13. Anandan K, Rajesh K, Gayathri K, Vinoth Sharma S, Mohammed Hussain S G and Rajendran V 2020 Phys. E Low-Dimens. Syst. Nanostruct. 124 114342

    Article  CAS  Google Scholar 

  14. Kuryliszyn-Kudelska I, Dobrowolski W, Arciszewska M, Małolepszy A, Stobinski L and Minikayev R 2018 Magnetochemistry 4 28

    Article  CAS  Google Scholar 

  15. Limbu S, Singh L R and Okram G S 2020 RSC Adv. 10 35619

    Article  CAS  Google Scholar 

  16. Faizan M, Siddique M N, Ahmad S, Tripathi P and Riyajuddin S K 2021 J. Alloys Compd. 853 157378

    Article  CAS  Google Scholar 

  17. Sambasivam S, Gopi C V V M, Saradhi Maram P, Mueen Arbi H, Narayanaswamy V, Kamzin A S et al 2021 J. Solid State Chem. 294 122

    Article  Google Scholar 

  18. Cretu V, Postica V, Mishra A K, Hoppe M, Tiginyanun I, Mishra Y K et al 2016 J. Mater. Chem. A 4 6527

    Article  CAS  Google Scholar 

  19. Devesa S, Rooney A P, Graça M P, Cooper D and Costa L C 2021 Mater. Sci. Eng. B 263 114830

    Article  CAS  Google Scholar 

  20. Zhang F, Chan S W, Spanier J E, Apak E, Jin Q, Robinson R D et al 2002 Appl. Phys. Lett. 80 127

    Article  CAS  Google Scholar 

  21. Quintard P E, Barbéris P, Mirgorodsky A P and Merle-Méjean T 2002 J. Am. Ceram. Soc. 85 1745

    Article  CAS  Google Scholar 

  22. Kumar S, Bhunia S, Singh J and Ojha A K 2015 J. Alloys Compd. 649 348

    Article  CAS  Google Scholar 

  23. Lopez E F, Escribano V S, Panizza M, Carnasciali M M and Busca G 2001 J. Mater. Chem. 11 1891

    Article  Google Scholar 

  24. Basahel S N, Ali T T, Mokhtar M and Narasimharao K 2015 Nanoscale Res. Lett. 10 1

    Article  CAS  Google Scholar 

  25. Gurushantha K, Anantharaju K S, Nagabhushana H, Sharma S C, Vidya Y S, Shivakumara C et al 2015 J. Mol. Catal. A Chem. 397 36

    Article  CAS  Google Scholar 

  26. Tiwari N, Kuraria R K and Tamrakar R K 2014 J. Radiat. Res. Appl. Sci. 7 542

    Article  Google Scholar 

  27. De la Rosa J R, Hernandez A, Rojas F and José Ledezma J 2008 Colloids Surf. A Physicochem. Eng. Asp. 315 147

    Article  Google Scholar 

  28. Akilandeswari S, Rajesh G, Govindarajan D, Thirumalai K and Swaminathan M 2018 J. Mater. Sci. Mater. Electron. 29 18258

    Article  CAS  Google Scholar 

  29. Sahu H R and Rao G R 2000 Bull. Mater. Sci. 23 349

    Article  CAS  Google Scholar 

  30. Anandan K, Rajesh K, Gayathri K, Vinoth Sharma S, Mohammed Hussain S G and Rajendran V 2020 Phys. E Low Dimens. Syst. Nanostruct. 124 114342

    Article  CAS  Google Scholar 

  31. Saho S K, Mohapatra M and Anand S 2015 J. Exp. Nanosci. 10 1012

    Article  Google Scholar 

  32. Kumar S, Bhunia S and Ojha A K 2016 Chem. Phys. Lett. 644 271

    Article  CAS  Google Scholar 

  33. Limbu S and Singh L R 2022 J. Solid State Chem. 308 122929

    Article  CAS  Google Scholar 

  34. Lin C K, Pang M L, Yu M and Lin J 2005 J. Lumin. 114 299

    Article  CAS  Google Scholar 

  35. Zhao X, Wang F, Wu J, Zhu B and Gu Y 2021 Nanomaterials 11 2741

    Article  CAS  Google Scholar 

  36. Chang S and Doong R 2007 Chem. Mater. 19 4804

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeeb Limbu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limbu, S. Investigation of crystal structure confinement and optical attributes of monoclinic–tetragonal Zirconia nanocrystals via chemical co-precipitation technique. Bull Mater Sci 45, 182 (2022). https://doi.org/10.1007/s12034-022-02769-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02769-3

Keywords

Navigation