Skip to main content
Log in

Boron-modified TiO2 thin films for visible-light-driven photocatalysis

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Boron-modified TiO2 thin films with different boron contents were obtained by the spin coating technique. Chemical composition and bonding were determined by X-ray photoelectron spectroscopy (XPS). Raman, UV–visible and photoluminescence spectroscopies were used to characterize the deposited films. XPS results revealed that the boron content varied from 2.1 to 9.0 at% and that Ti-O-B bonds are formed at the highest content. Raman spectra showed that incorporation of B in the titania lattice improved the crystallinity of the anatase phase and promoted a decrease in the crystallite size. Photoluminescence characterization indicated a quenching of the electron–hole recombination rate due to boron incorporation. The photocatalytic activity improved with films modified with B under solar-simulated irradiation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Nirupama and Mandal B K 2022 Biointerface Res. Appl. Chem. 12 2535

    CAS  Google Scholar 

  2. Chen D, Sivakumar M and Ray A K 2000 Dev. Chem. Eng. Min. Process 8 505

    Article  Google Scholar 

  3. Zhu S and Wang D 2017 Adv. Energy Mater. 7 1700841

    Article  Google Scholar 

  4. Sakthivel S, Neppolian B, Shankar M V, Palanichamy M and Murugesan V 2003 Sol. Energy Mater. Sol. Cells 77 65

    Article  CAS  Google Scholar 

  5. Ibhadon A O and Fitzpatrick P 2013 Catalyst 3 189

    Article  CAS  Google Scholar 

  6. Zangeneh H, Zinatizadeh A A L, Habibi M, Akia M and Hasnain Isa M 2015 J. Ind. Eng. Chem. 26 1

    Article  CAS  Google Scholar 

  7. Solis-Casados D A, Escobar-Alarcón L, Fernández M and Valencia F 2013 Fuel 110 17

    Article  CAS  Google Scholar 

  8. Pérez-Álvarez J, Solis-Casados D A, Romero S and Escobar-Alarcón L 2014 Adv. Mater. Res. 976 212

    Article  Google Scholar 

  9. Escobar-Alarcón L, Velarde Granados E, Villa Sánchez D, Olea-Mejia O, Haro-Poniatowski E and Arrieta Castañeda A 2014 Adv. Mater. Res. 976 196

    Article  Google Scholar 

  10. Escobar-Alarcón L, Solis-Casados D A, Romero S and Haro-Poniatowski E 2020 Appl. Phys. A 126 57

    Article  Google Scholar 

  11. Solis-Casados D A, Escobar-Alarcón L, Gómez-Olivan L M, Haro-Poniatowski E and Klimova T 2017 Fuel 198 3

    Article  CAS  Google Scholar 

  12. Solis-Casados D A, Escobar-Alarcón L, Alvarado Pérez V and Haro-Poniatowski E 2018 Int. J. Photoenergy 2018 8715987

    Article  Google Scholar 

  13. Solis-Casados D, Martínez Peña J, Hernández-López S and Escobar-Alarcón L 2020 Top. Catal. 63 564

    Article  CAS  Google Scholar 

  14. Escobar Alarcón L and Solis-Casados D A 2021 MundoNano 14 10

    Google Scholar 

  15. Pedanekar R S, Shaikh S K and Rajpure K Y 2020 Curr. Appl. Phys. 20 931

    Article  Google Scholar 

  16. Jose A, Oliver B and Elisa R 2004 Surf. Sci. 549 134

    Article  Google Scholar 

  17. McCaterty E and Wightman J P 1998 Surf. Interface Anal. 26 549

    Article  Google Scholar 

  18. Jung Kyeong Youl, Park Seung Bin and Ihmb Son-Ki 2004 Appl. Catal. B 51 239

    Article  CAS  Google Scholar 

  19. Balachandran U and Eror N G 1982 J. Solid State Chem. 42 276

    Article  CAS  Google Scholar 

  20. Langford J I and Wilson A J C 1978 J. Appl. Cryst. 11 102

    Article  CAS  Google Scholar 

  21. Maniua D, Iliescua T, Ardeleana I, Cinta-Pinzarua S, Tarceab N and Kiefer W 2003 J. Mol. Struct. 651 485

    Article  Google Scholar 

  22. Haonan G, Feiyan X, Bei Ch, Jiaguo Y and Wingkei H 2019 Chem. Cat. Chem. 11 6301

    Google Scholar 

  23. Escobar-Alarcón L, Arrieta A, Camps E, Muhl S, Rodil S and Vigueras-Santiago E 2007 Appl. Surf. Sci. 254–1 412

    Article  Google Scholar 

  24. Daimei Ch, Dong Y, Qun W and Jiang Zhongyi 2006 Ind. Eng. Chem. Res. 45 4110

    Article  Google Scholar 

  25. Difa X, Bei Ch, Shaowen C and Jiaguo Y 2015 Appl. Cat. B: Environm. 164 380

    Article  Google Scholar 

  26. Chien-Kai H, Tsunghsueh W, Chang-Wei H, Chi-Yung L, Mei-Yao W and Yang-Wei L 2017 Appl. Surf. Sci. 399 10

    Article  Google Scholar 

  27. Lei X, Yongge W, Wan G, Yihang G and Yingna G 2015 Appl. Surf. Sci 332 682

    Article  Google Scholar 

  28. Si-Zhan W, Kui L and Wei-De Z 2015 Appl. Surf. Sci. 324 324

    Article  Google Scholar 

  29. Jing L, Qu Y, Wang B, Li S, Jiang B, Yang L et al 2006 Sol. Energy Mater. Sol. Cells 90 1773

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge SIEA-UAEM for financial support through the project 6537, the technical assistance of LIA Citlalit Martínez, Dr Diego Martínez-Otero, M en C. Nieves Zavala, M en C. Lizbeth Triana, M en C. Melina Tapia, M en C Alejandra Núñez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora Alicia Solis-Casados.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solis-Casados, D.A., Rodríguez-Nava, E., Basurto, R. et al. Boron-modified TiO2 thin films for visible-light-driven photocatalysis. Bull Mater Sci 45, 117 (2022). https://doi.org/10.1007/s12034-022-02708-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02708-2

Keywords

Navigation