Skip to main content
Log in

Magnetic and magnetoelectric properties of NixCu1–xFe2O4–PbZr0.52Ti0.48O3 single and multilayered thick films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Nano-phase ferrite, NixCu1–xFe2O4 (where x = 0.3, 0.4, 0.5, 0.6, 0.7 and 0.9) and ferroelectric, PbZr0.52Ti0.48O3 are synthesized by autocombustion method. Trilayered NiCuFe2O4/PZT/NiCuFe2O4 and single layer of y(NixCu1–xFe2O4) + (1–y) (Pb(Zr0.52Ti0.48)O3) composite thick films are fabricated on fluorine tin oxide coated glass substrates using a screen printing technique. The X-ray diffraction (XRD) patterns confirm the highly crystallized spinal structure in the ferrite phase and perovskite structure in the ferroelectric phase. The scanning electron microscope images show that the grain size in trilayered and single-layered films is in the range 100 and 200 nm, respectively; which is also confirmed by broadened peaks in the XRD pattern. The hysteresis loop studies using vibrating sample magnetometer reveal that both saturation magnetization and coercivity decrease slightly with an increase in composition parameter x of ferrite phase and is attributed to the negative magnetostriction coefficient of nickel present in the ferrite phase. The magnetoelectric (ME) voltage coefficient (αE31) vs. DC bias magnetic field shows a peak due to enhanced domain activity and piezoelectric effect. The trilayered thick films exhibit larger values of ME coefficient as compared to single-layered films due to the higher resistivity of trilayered films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Dutta Dimple P, Mandal Balaji P, Abedlhamid E, Naik Ratna and Tyagi Avesh K 2015 Dalton Trans. 44 11388

  2. Dutta Dimple P, Roy Mainak, Nandita Maiti and Tyagi Avesh K 2016 Phys. Chem. Chem. Phys. 18 9758

    Article  CAS  Google Scholar 

  3. Van Run A M J G, Terrel D R and Scholing J H 1974 J. Mater. Sci. 9 1710

    Article  Google Scholar 

  4. Suryanarayana S V 1994 Bull. Mater. Sci. 17 1259

    Article  CAS  Google Scholar 

  5. Van den Boomgaard J, Terrell D R and Born R A J 1974 J. Mater. Sci. 9 1705

    Article  Google Scholar 

  6. Suchetelene Van 1972 J. Philips Res. Rep. 27 28

    Google Scholar 

  7. Weng L, Fu Y, Song S, Tang J and Li J 2007 J. Scr. Mater. 56 465

    Article  CAS  Google Scholar 

  8. Ren S Q, Weng L Q, Song S H, Li F, Wan J G and Zeng M 2005 J. Mater. Sci. 40 4375

    Article  CAS  Google Scholar 

  9. Wu D, Gong W, Deng H and Li M 2007 J. Phys. D: Appl. Phys. 40 5002

    Article  CAS  Google Scholar 

  10. Srinivasan G, De Vreugd C P, Flattery C S, Laletsin V M and Paddubnaya N 2004 Appl. Phys. Lett. 85 2550

    Article  CAS  Google Scholar 

  11. Ryu J, Praia S, Uchino K, Viehland D and Kim H 2002 J. Korean Ceram. Soc. 39 813

    Article  CAS  Google Scholar 

  12. Ryu J, Priya S, Uchino K and Kim H 2002 J. Electroceram. 8 107

    Article  CAS  Google Scholar 

  13. Srinivasan G, Rasmussen E, Levin B and Hayes R 2002 Phys. Rev. B 65 134402

  14. Dong S X, Zhai J, Li J F and Viehland D 2006 J. Appl. Phys. 88 082907

  15. Dong S, Zhai J, Li J F and Viehland D 2006 Appl. Phys. Lett. 89 252904

  16. Bush A A, Ya V, Shkuratov V Y, Chernykh I A and Fetisov Y K 2010 Tech. Phys. 55 387

    Article  CAS  Google Scholar 

  17. Patil N, Velhal N B, Pawar R and Puri Vijay 2014 Microelectron. Int. 32 25

    Google Scholar 

  18. Wang J, Li Z, Wang J, He H and Nan C 2015 J. Appl. Phys. 117 044101

  19. Islam R A and Priya S 2008 J. Mater. Sci. 43 2072

    Article  CAS  Google Scholar 

  20. Franco A Jr, Alves T E P, Lima E C D, Nunes E S and Zapf V 2009 Appl. Phys. A 94 131

    Article  CAS  Google Scholar 

  21. Jain S R and Adiga K C 1981 Combust. Flame 40 71

    Article  CAS  Google Scholar 

  22. Liu J 2009 J. Appl. Phys. 105 083915

  23. Shaik A D and Mathe V L 2009 Mater. Res. Bull. 44 2194

    Article  Google Scholar 

  24. Islam R and Priya S 2006 Appl. Phys. Lett. 89 152911

  25. Jieyu C, Bai Y, Nie C and Zhao S 2016 J. Alloys Compd. 663 480

    Article  Google Scholar 

  26. Li X, Hou X and Wang J 2019 IEEE–2019 13th Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA) p 1

  27. Zabotto F L, Gualdi A J, de Camargo P C, de Oliveir A J A, Eiras J A and Garcia D 2016 J. Alloys Compd. 676 80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Prof. L Gomathidevi, the Vice-Chancellor, and Dr G Krishna Reddy, Chairman, Department of Physics, Maharani Cluster University, Bangalore, for their continuous encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S S Bellad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begum, S.S., Bellad, S.S. Magnetic and magnetoelectric properties of NixCu1–xFe2O4–PbZr0.52Ti0.48O3 single and multilayered thick films. Bull Mater Sci 45, 120 (2022). https://doi.org/10.1007/s12034-022-02698-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02698-1

Keywords

Navigation