Skip to main content

Advertisement

Log in

Twisted laminar superconducting composite: MgB2 embedded carbon nanotube yarns

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Twisted laminar superconducting composite structures based on multi-wall carbon nanotube (MWCNT) yarns were crafted by integrating magnesium and boron homogeneous mixture into the carbon nanotube (CNT) aerogel sheets. After the ignition of the Mg–B–MWCNT system, under the controlled argon environment, the high exothermic reaction between magnesium (Mg) and boron (B) with stoichiometric ratio produced the MgB2@MWCNT superconducting composite yarns. The process was conducted under the controlled argon environment and uniform heating rate in the differential scanning calorimetry and thermogravimetric analyzer. The XRD analysis confirmed that the produced composite yarns contain nano and microscale inclusions of superconducting phase of MgB2. The mechanical properties of the composite twisted and coiled yarns at room temperature were characterized. The tensile strength up to 200 MPa and Young’s modulus of 1.27 GPa proved that MgB2@MWCNT composite is much stiffer than single component MgB2 wires. The superconductive critical temperature of Tc ~38 K was determined by measuring temperature-dependent magnetization curves. The critical current density, Jc of superconducting component of composite yarns was obtained at different temperatures below Tc by using magnetic hysteresis measurement. The highest value of Jc = 3.39 × 107 A cm−2 was recorded at 5 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jun N, Nakagawa N, Muranaka T, Zenitani Yu and Akimitsu J 2001 Nature 410 63

    Article  Google Scholar 

  2. Musenich R, Calvelli V, Farinon S, Battiston R, Burger W J and Spillantini P 2014 IEEE Trans. Appl. Supercond. 24 4601504

    Article  Google Scholar 

  3. Musenich R, Nardelli D, Brisigotti S, Pietranera D, Tropeano M, Tumino A et al 2015 IEEE Trans. Appl. Supercond. 26 6200204

    Google Scholar 

  4. Surdu A E, Hamdeh H H, Al-Omari I A, Sellmyer D J, Socrovisciuc A V, Prepelita A A et al 2011 Beilstein J. Nanotechnol. 2 809

    Article  CAS  Google Scholar 

  5. Zhao Y, Feng Y, Cheng C H, Zhou L, Wu Y, Machi T et al 2001 Appl. Phys. Lett. 79 1154

    Article  CAS  Google Scholar 

  6. Kim J H, Yeoh W K, Qin M J, Xu X and Dou S X 2006 J. Appl. Phys. 100 013908

    Article  Google Scholar 

  7. Dipak P, Maeda M, Choi S, Kim S J, Shahabuddin M, Parakandy J M et al 2014 Scr. Mater. 88 13

    Article  Google Scholar 

  8. Tolendiuly S, Fomenko S M, Abdulkarimova R G, Mansurov Z A, Dannangoda G C and Martirosyan K S 2016 Int. J. Self-Propagat. High-Temp. Synth. 25 97

    Article  CAS  Google Scholar 

  9. Tolendiuly S, Fomenko S M, Dannangoda G C and Martirosyan K S 2017 Eurasian Chemico-Technol. J. 19 177

    Article  CAS  Google Scholar 

  10. Zhang D, Sumption M D, Collings E W, Thong C J and Rindfleisch M A 2019 IEEE Trans. Appl. Supercond. 29 1

    Google Scholar 

  11. Feng Y, Zhao Y, Sun Y P, Liu F C, Fu B Q, Zhou L et al 2001 Appl. Phys. Lett. 79 3983

    Article  CAS  Google Scholar 

  12. Yanwei M, Kumakura H, Matsumoto A, Hatakeyama H and Togano K 2003 Supercond. Sci. Technol. 16 852

    Article  Google Scholar 

  13. Chen S K, Wei M and MacManus-Driscoll J L 2006 Appl. Phys. Lett. 88 192512

    Article  Google Scholar 

  14. Pan X F, Shen T M, Li G, Cheng C H and Zhao Y 2007 Phys. Status Solidi 204 1555

    Article  CAS  Google Scholar 

  15. Kim J H, Yeoh W K, Xu X, Dou S X, Munroe P, Rindfleisch M et al 2006 Phys. C: Supercond. Appl. 449 133

    Article  CAS  Google Scholar 

  16. Dou S X, Yeoh W K, Horvat J and Ionescu M 2003 Appl. Phys. Lett. 83 4996

    Article  CAS  Google Scholar 

  17. Kim J H, Yeoh W K, Qin M J, Xu X, Dou S X, Munroe P, Kumakura H et al 2006 Appl. Phys. Lett. 89 122510

    Article  Google Scholar 

  18. Chandra S, Giri R, Malik S K and Srivastava O N 2007 J. Nanosci. Nanotechnol. 7 1804

    Article  Google Scholar 

  19. Momoko S, Shimoyama J, Takagi N, Motoki T, Kodama M and Tanaka H 2018 Solid State Commun. 281 53

    Article  Google Scholar 

  20. Wei B Q, Vajtai R and Ajayan P M 2001 Appl. Phys. Lett. 79 1172

    Article  CAS  Google Scholar 

  21. Kim P, Li S, Arun M and McEuen P L 2001 Phys. Rev. Lett. 87 215502

    Article  CAS  Google Scholar 

  22. Baughman R H, Zakhidov A A and De Heer W A 2002 Science 297 787

    Article  CAS  Google Scholar 

  23. Zhang M, Atkinson K R and Baughman R H 2004 Science 306 1358

    Article  CAS  Google Scholar 

  24. Zakhidov A A, Baughman R H, Iqbal Z, Cui Ch, Khayrullin I, Dantas S O et al 1998 Science 282 897

    Article  CAS  Google Scholar 

  25. Bykova J S, Lima M D, Haines C S, Tolly D, Salamon M B, Baughman R H et al 2014 Adv. Mater. 26 7510

    Article  CAS  Google Scholar 

  26. Hobosyan M A, Martinez P M, Zakhidov A A, Haines C S, Baughman R H and Martirosyan K S 2017 Appl. Phys. Lett. 110 203101

    Article  Google Scholar 

  27. Langford J I and Wilson A J C 1978 J. Appl. Crystallogr. 11 102

    Article  CAS  Google Scholar 

  28. Nishijima G, Ye S J, Matsumoto A, Togano K, Kumakura H, Kitaguchi H et al 2012 Supercond. Sci. Technol. 25 054012

    Article  Google Scholar 

  29. Kazumune K, Takaya R, Kasaba K, Tachikawa K, Yamada Y, Shimura S et al 2005 Supercond. Sci. Technol. 18 S351

    Article  Google Scholar 

  30. Bean C P 1964 Rev. Mod. Phys. 36 31

    Article  Google Scholar 

  31. Shekhar Ch, Giri R, Tiwari R S and Srivastavaa O N 2007 J. Appl. Phys. 102 093910

    Article  Google Scholar 

  32. Yeoh W K, Kim J H, Horva J, Dou S X and Munroe P 2006 Supercond. Sci. Technol. 19 2

    Article  Google Scholar 

  33. Pallecchi I, Tarantini C, Aebersold H U, Braccini V, Fanciulli C, Ferdeghini C et al 2005 Phys. Rev. B 71 212507

    Article  Google Scholar 

  34. Choi E M, Lee H S, Kim H, Lee S I, Kim H J and Kang W N 2004 Appl. Phys. Lett. 84 82

    Article  CAS  Google Scholar 

  35. Wang S F, Dai S Y, Zhou Y L, Zhu Y B, Chen Z H, Lü H B and Yang G Z 2004 J. Supercond. 17 397

    Article  CAS  Google Scholar 

  36. Shekhar C, Giri R, Tiwari R S, Rana D S, Malik S K and Srivastava O N 2005 Supercond. Sci. Technol. 18 1210

    Article  CAS  Google Scholar 

  37. Wang J, Bugoslavsky Y, Berenov A, Cowey L, Caplin A D, Cohen L F et al 2002 Appl. Phys. Lett. 81 2026

    Article  CAS  Google Scholar 

  38. Shen T M, Li G, Zhu X T, Cheng C H and Zhao Y 2005 Supercond. Sci. Technol. 18 L49

    Article  CAS  Google Scholar 

  39. Bhatia M, Sumption M D, Collings E W and Dregia S 2005 Appl. Phys. Lett. 87 042505

    Article  Google Scholar 

  40. Kim J H, Dou S X, Oh S, Jercinovic M, Babic E, Nakane T and Kumakura H 2008 J. Appl. Phys. 104 063911

    Article  Google Scholar 

  41. Wilke R H T, Bud’ko S L, Canfield P C, Finnemore D K, Suplinskas R J and Hannahs S T 2004 Phys. Rev. Lett. 92 217003

    Article  CAS  Google Scholar 

  42. Kazakov S M, Puzniak R, Rogacki K, Mironov A V, Zhigadlo N D, Jun J et al 2005 Phys. Rev. B 71 024533

    Article  Google Scholar 

  43. Eisterer M 2007 Supercond. Sci. Technol. 20 R47

    Article  CAS  Google Scholar 

  44. Xi X X 2008 Rep. Prog. Phys. 71 116501

    Article  Google Scholar 

  45. Kim J H, Oh S, Heo Y-U, Hata S, Kumakura H, Matsumoto A et al 2012 NPG Asia Mater. 4 e3

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the partial financial support for this research by National Science Foundation awards 1126410 and DMR-1523577, Welch Foundation grant AT 1617, the Ministry of Education and Science of the Russian Federation (Project 14.Y26.31.0010), Russian Science Foundation (no. 19-73-30023) and partially by Increase Competitiveness Program of NUST “MISiS” (no. K2-2015–014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K S Martirosyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamichhane, U., Dannangoda, G.C., Hobosyan, M.A. et al. Twisted laminar superconducting composite: MgB2 embedded carbon nanotube yarns. Bull Mater Sci 44, 285 (2021). https://doi.org/10.1007/s12034-021-02571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02571-7

Keywords

Navigation