Skip to main content
Log in

Electrodeposition of multilayer NiW alloy coating for improved anticorrosion performance

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The attractiveness of electroplating linked to cathodic current density (CD) has tried to exploit here to the development of coatings of high corrosion resistance. Multilayer NiW alloy coatings of better anticorrosion performance were electrodeposited from a tartrate bath by periodic pulsing of CD between two values, during the process of deposition. The multilayer coatings of different configurations, in terms of composition and thickness of individual layers were developed by proper modulation of amplitude and duration of the square current pulse, respectively. The deposition conditions were optimized for best performance of the coatings against corrosion. Our experimental study revealed that under optimal condition, multilayer NiW coating having (NiW)1.0/3.0/120 configuration is almost six times more corrosion resistant than its monolayer coating, deposited from same bath for same duration. The reason for improved corrosion performance in multilayer NiW alloy coating was explained in the light of effect of larger interfaces affected due to layered deposition and confirmed by scanning electron microscopy analysis, energy dispersive spectroscopy and X-ray diffraction study. The mechanism of corrosion responsible for its better performance, in relation to its monolayer coating is given, and results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Bang J H and Suslick K S 2010 Adv. Mater. 22 1039

    Article  CAS  Google Scholar 

  2. Wilcox G D and Gabe D R 1993 Corros. Sci. 35 1251

    Article  CAS  Google Scholar 

  3. Thangaraj V, Eliaz N and Hegde A C 2009 J. Appl. Electrochem. 39 339

    Article  CAS  Google Scholar 

  4. Bull S J and Jones A M 1996 Surf. Coatings Technol. 78 173

    Article  CAS  Google Scholar 

  5. Ueda Y, Kikuchi N, Ikeda S and Houga T 1999 J. Magn. Magn. Mater. 198 740

    Article  Google Scholar 

  6. Yahalom J and Zadok O 1987 J. Mater. Sci. 22 499

    Article  CAS  Google Scholar 

  7. Brenner A 1963 Electrodeposition of alloys–principles and practice vol. 1 and 2, (Academic Press)

  8. Indyka P, Beltowska-Lehman E, Tarkowski L, Bigos A and García-Lecina E 2014 J. Alloys Compd. 590 75

    Article  CAS  Google Scholar 

  9. Alper M, Attenborough K, Hart R, Lane S J, Lashmore D S, Younes C et al 1993 Appl. Phys. Lett. 63 2144

    Article  CAS  Google Scholar 

  10. Wasekar N P, Latha SM, Ramakrishna M, Rao D S and Sundararajan G 2016 Mater. Des. 112 140

    Article  CAS  Google Scholar 

  11. Hosokawa H, Yamasaki T, Sugamoto N, Tomizawa M, Shimojima K and Mabuchi M 2004 Mater. Trans. 45 1807

    Article  CAS  Google Scholar 

  12. Sridhar T M, Eliaz N and Gileadi E 2005 Electrochem. Solid-State Lett. 8 58

    Article  Google Scholar 

  13. Lee S, Choi M, Park S, Jung H and Yoo B 2015 Electrochim. Acta 153 225

    Article  CAS  Google Scholar 

  14. Elias L and Hegde A C 2017 J. Alloys Compd. 712 618

    Article  CAS  Google Scholar 

  15. Elias L and Hegde A C 2015 Surf. Coatings Technol. 283 61

    Article  CAS  Google Scholar 

  16. Eliaz N and Gileadi E 2008 Mod. Asp. Electrochem. 42 191

    Article  CAS  Google Scholar 

  17. Kanani N 2006 (eds) Electroplating: basic principles, processes and practice (Elsevier Ltd.)

  18. Benaicha M, Allam M, Dakhouche A and Hamla M 2016 Int. J. Electrochem. Sci. 11 7605

    Article  CAS  Google Scholar 

  19. Tsyntsaru N, Cesiulis H, Donten M, Sort J, Pellicer E and Podlaha-Murphy E J 2012 Surf. Eng. Appl. Electrochem. 48 491

    Article  Google Scholar 

  20. Cullity B 1956 Elements of X ray diffraction (Addsion-Wesley Publishing)

  21. Ullal Y and Hegde A C 2014 Appl. Phys. A Mater. Sci. Process. 116 1587

    Article  CAS  Google Scholar 

  22. Yogesha S, Udupa K R and Hegde A C 2012 Surf. Eng. 28 49

    Article  CAS  Google Scholar 

  23. Dobrzañski L A and Lukaszkowicz K 2007 Arch. Mater. Sci. Eng. 28 12

    Google Scholar 

  24. Ganesan P, Kumaraguru S P and Popov B N 2007 Surf. Coatings Technol. 201 7896

    Article  CAS  Google Scholar 

  25. MacDonald J R 1987 Impedance spectroscopy (New York: Wiley)

    Google Scholar 

  26. Abouzari M S, Berkemeier F, Schmitz G and Wilmer D 2009 Solid State Ion. 180 922

    Article  Google Scholar 

  27. Yogesha S and Hegde A C 2011 J. Mater. Process. Technol. 211 1409

    Article  CAS  Google Scholar 

  28. Yuan X Z, Song C, Wang H and Zhang J 2010 Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications. Springer, London

    Book  Google Scholar 

Download references

Acknowledgement

Neethu Raveendran M is thankful to National Institute of Technology Karnataka (NITK), Surathkal, India, for providing research facility and financial support in the form of institute fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Chitharanjan Hegde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raveendran, M.N., Hegde, A.C. Electrodeposition of multilayer NiW alloy coating for improved anticorrosion performance. Bull Mater Sci 44, 84 (2021). https://doi.org/10.1007/s12034-021-02390-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02390-w

Keywords

Navigation