Skip to main content
Log in

Dynamic and thermodynamic properties of antiperovskite compound BiNCa3

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we detailed the density functional theory (DFT) simulations of the structure parameters, lattice dynamic properties and the temperature effect of the ideal cubic antiperovskite semiconductor compound BiNCa3 by using the code ABINIT in the edge work of DFT. This code is supported by the pseudopotentials technique with the potential of exchange and correlation local density approximation. Initially we proposed the structural parameters as lattice constant and bulk modulus, and their derived values are compared very well with available results in the literature. We are interested in computing of the lattice dynamic and thermodynamic properties of BiNCa3 compound. We applied the approach of linear response in the density function perturbation theory to compute the phonon dispersion curves and phonon density of states (DOS). We got 15 phonon modes; 3 acoustic vibrate by Bi atoms and 12 optical modes, of which 9 of them vibrate by Ca atoms and the rest vibrate by N atoms. The effective charges of Born and dielectric parameters, static and electronic are computed. Using the phonon DOS, we have investigated the thermal properties with the temperature effect such as internal energy, free energy and entropy, which gives the disorder and the heat capacity that converged to the limit of Dulong–Petit at highest temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hichour M, Rached D, Rabah M, Benalia S, Khenata R and Semari F 2009 Physica B 404 4034

    Article  CAS  Google Scholar 

  2. Navrotsky A and Weidner D J 1989 Geophys. Monogr. Ser. 45 67

    Google Scholar 

  3. Ihringer J, Maichle J, Prandl W, Hewat A and Wroblewski T 1991 Z. Phys. B: Condens. Matter 82 171

    Article  CAS  Google Scholar 

  4. Spinicci R, Tofanari A, Delmastro A, Mazza D and Ronchetti S 2002 Mater. Chem. Phys. 76 20

    Article  CAS  Google Scholar 

  5. Gilleo M 1956 J. Chem. Phys. 24 1239

    Article  CAS  Google Scholar 

  6. Huang K, Feng M, Goodenough J and Milliken C 1997 J. Electrochem. Soc. 144 3620

    Article  CAS  Google Scholar 

  7. Jona F, Shirane G and Pepinsky R 1955 Phys. Rev. 97 1584

    Article  CAS  Google Scholar 

  8. Moret M, Devillers M, Worhoff K and Larsen P 2002 J. Appl. Phys. 92 468

    Article  CAS  Google Scholar 

  9. Rao K and Yoon K 2003 J. Mater. Sci. 38 391

    Article  CAS  Google Scholar 

  10. Fruchart D and Bertaut E F 1978 J. Phys. Soc. Jpn. 44 781

    Article  CAS  Google Scholar 

  11. Cherrad D, Maouche D, Louail L and Maamache M 2010 Solid State Commun. 150 782

    Article  CAS  Google Scholar 

  12. Chern M Y, Vennos D A and Disalvo F J 1992 J. Solid State Chem. 96 415

    Article  CAS  Google Scholar 

  13. Kamishima K, Goto T, Nakagawa H, Miura N, Ohashi M, Mori N et al 2000 Phys. Rev. B 63 024

    Article  Google Scholar 

  14. Kim W S, Chi E O, Kim J C, Choi H S and Hur N H 2001 Solid State Commun. 119 507

    Article  CAS  Google Scholar 

  15. Chi E O, Kim W S and Hur N H 2001 Solid State Commun. 120 307

    Article  CAS  Google Scholar 

  16. Zhao J T, Dong Z C, Vaughey J T, Ostenson J E and Corbett J D 1995 J. Alloys Compd. 230 1

    Article  CAS  Google Scholar 

  17. Haddadi K, Bouhemadou A, Louail L, Maabed S and Maouche D 2009 Phys. Lett. A 373 1777

    Article  CAS  Google Scholar 

  18. Ýyigör Ahmet and Selgin A L 2019 Sakarya University J. Sci. 23 700

    Google Scholar 

  19. Bouhemadou A and Khenata R 2007 Comput. Mater. Sci. 39 803

    Article  CAS  Google Scholar 

  20. Okoye C 2006 Mater. Sci. Eng. B 130 101

    Article  CAS  Google Scholar 

  21. Shein I and Ivanovskii A 2004 J. Solid State Chem. 177 61

    Article  CAS  Google Scholar 

  22. Papaconstantopoulos D A and Pickett W E 1992 Phys. Rev. B 45 4008

    Article  CAS  Google Scholar 

  23. Vansant P R, Van Camp P E and Van Doren V E 1998 Phys. Rev. B 57 7615

    Article  CAS  Google Scholar 

  24. Beznosikov BV 2003 J. Struct. Chem. 44 885

    Article  CAS  Google Scholar 

  25. Bilal M, Jalali-Asadabadi S, Ahmad R and Ahmad I 2015 J. Chem. 2015 11

    Article  CAS  Google Scholar 

  26. Tran F, Laskowski R, Blaha P and Schwarz K 2007 Phys. Rev. B 75 115

    Article  CAS  Google Scholar 

  27. Kohn W and Sham L J 1965 Phys. Rev. 140 A1133

    Article  Google Scholar 

  28. Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M et al 2002 Comput. Mater. Sci. 25 478

    Article  Google Scholar 

  29. The ABINIT code is a common project of the Universite Catholique de Louvain, Corning Incorporated, and other contributors, http://www.abinit.org

  30. Gonze X, Amadond B, Anglade P M, Beuken J M, Bottin F, Boulangera P et al 2009 Comput. Phys. Commun. 180 2582

    Article  CAS  Google Scholar 

  31. Gonze X, Rignanese G M, Verstraete M, Beuken J M, Pouillon Y, Caracas R et al 2005 Z. Kristallogr. 220 558

    Article  CAS  Google Scholar 

  32. Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864

    Article  Google Scholar 

  33. Hartwigsen C, Goedecker S and Hutter J 1998 Phys. Rev. B 58 3641

    Article  CAS  Google Scholar 

  34. Troullier N and Martins J L 1991 Phys. Rev. B 43 1993

    Article  CAS  Google Scholar 

  35. Troullier N and Martins J L 1990 Solid State Commun. 74 613

    Article  Google Scholar 

  36. Fuchs M and Scheffler M 1999 Comput. Phys. Commun. 119 67

    Article  CAS  Google Scholar 

  37. Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188

    Article  Google Scholar 

  38. Gonze X and Lee C 1997 Phys. Rev. B 55 10355

    Article  CAS  Google Scholar 

  39. Baroni S, de Gironcoli S, dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515

    Article  CAS  Google Scholar 

  40. Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244

    Article  CAS  Google Scholar 

  41. Zhang H F, Yu Y, Zhao Y N, Xue W H and Gao T 2010 J. Phys. Chem. Solids 71 976

    Article  CAS  Google Scholar 

  42. Omar M A 1975 Elementary solid state physics: principles and applications (Reading, Massachusetts: Addison-Wesley Publishing Company)

    Google Scholar 

  43. Yassine C and Mourad S 2019 Pramana J. Phys. 93 65

    Article  CAS  Google Scholar 

  44. Choudhury N, Wu Z G, Walter E J and Cohen R E 2005 Phys. Rev. B 71 125

    Google Scholar 

  45. Zhao Y, Tian X, Xue W and Gao T 2009 Solid State Commun. 149 2130

    Article  CAS  Google Scholar 

  46. Moakafi M, Khenata R, Bouhemadou A, Semari F, Reshak A H and Rabah M 2009 Comput. Mater. Sci. 46 1051

    Article  CAS  Google Scholar 

  47. Nunes R W and Vanderbilt D 1994 Phys. Rev. Lett. 73 712

    Article  CAS  Google Scholar 

  48. Pike N A, Dewandre A, Van Troeye B, Gonze X and Verstraete M J 2018 Phys. Rev. Mater. 2 063608

    Article  CAS  Google Scholar 

  49. Bellaiche L 2000 Phys. Rev. B 61 12

    Article  Google Scholar 

  50. Yu Y, Han H L, Wan M J, Cai T and Gao T 2009 Solid State Sci. 11 1343

    Article  CAS  Google Scholar 

  51. Lee C and Gonze X 1995 Phys. Rev. B 51 8610

    Article  CAS  Google Scholar 

  52. Fultz B 2010 Prog. Mater. Sci. 55 247

    Article  CAS  Google Scholar 

  53. Stern O 1916 Ann. Phys. (4e Folge) 51 237

    Article  Google Scholar 

Download references

Acknowledgements

We extend our honest thanks to the Algerian Ministry of Higher Education and Scientific Research and the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Chaouche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaouche, Y. Dynamic and thermodynamic properties of antiperovskite compound BiNCa3. Bull Mater Sci 44, 111 (2021). https://doi.org/10.1007/s12034-021-02374-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02374-w

Keywords

Navigation