Skip to main content
Log in

Investigation of physicochemical and electrical properties of \(\hbox {TiO}_{{2}}\) nanotubes/graphene oxide nanocomposite

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Graphene oxide (GO)-based nanocomposites have received a great attention due to their emerging applications. Here, we thoroughly examined the structural, electronic and surface properties of \(\hbox {GO}/\hbox {TiO}_{2}\) nanotubes nanocomposite. The nanocomposite is prepared by simple impregnation of \(\hbox {TiO}_{2}\) nanotubes (HNT400) with GO dispersion. GO is elaborated by an improved Hummer’s method, while HNT400 is obtained using alkaline hydrothermal treatment of \(\hbox {TiO}_{2}\) P25, followed by calcination at \(400^{\circ }\hbox {C}\). XRD and Raman analyses show that GO nanosheets do not change the structural properties of \(\hbox {TiO}_{2}\) nanotubes. TEM analysis confirms the formation of GO nanosheets assembled to \(\hbox {TiO}_{2}\) nanotubes. XPS and EPR results confirm the electron transfer between GO and \(\hbox {TiO}_{2}\) nanotubes. PL analysis reveals that GO inhibits the recombination of photogenerated electron–hole pairs in the nanocomposite. The ac conductivity measurements suggest the presence of grain and grain boundary effects in GO/HNT400.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li F, Jiang B X, Zhao C J and Zhang S 2015 Nano Energy 16 488

    CAS  Google Scholar 

  2. Low F W and Lai C W 2018 Renew. Sust. Energ. Rev. 82 103

    CAS  Google Scholar 

  3. Tian P, Tang L, Teng K S and Lau S P 2018 Mater. Today Chem. 10 221

    CAS  Google Scholar 

  4. Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    CAS  Google Scholar 

  5. He H, Klinowski J, Forster M and Lerf A 1998 Chem. Phys. Lett. 287 53

    CAS  Google Scholar 

  6. Muszynski R, Seger B and Kamat P V 2008 J. Phys. Chem. C 112 5263

    CAS  Google Scholar 

  7. Rao C N R, Sood A K, Subrahmanyam K S and Govindaraj A 2009 Angew. Chem. Int. Ed. 48 7752

    CAS  Google Scholar 

  8. Szczęśniak B, Choma J and Jaroniec M 2018 J. Colloid Interface Sci. 514 801

    Google Scholar 

  9. Nguyen C H and Juang R S 2019 J. Ind. Eng. Chem. 76 296

    CAS  Google Scholar 

  10. Chen L, Yang S, Mu L and Ma P C 2018 J. Colloid Interface Sci. 512 647

    CAS  Google Scholar 

  11. Sohna H, Woo Y S, Shin W, Yun D J, Lee T, Kim F S et al 2017 Appl. Surf. Sci.419 63

    Google Scholar 

  12. Anju M and Renuka N K 2019 Nano-Structures Nano-Objects 17 194

    Google Scholar 

  13. Saleem A, Ullah N, Khursheed K, Iqbal T, Shah S A, Asjad M et al 2018 J. Electronic Mater. 47 3749

    CAS  Google Scholar 

  14. Kiarii E M, Govender K K, Ndungu P G and Govender P P 2018 Bull. Mater. Sci. 41 75

    Google Scholar 

  15. Siwach B, Mohan D, Sharma S and Jyoti D 2017 Bull. Mater. Sci. 40 1371

    CAS  Google Scholar 

  16. Harraz F A, Faisal M, Ismail A A, Al-Sayari S A, El-Salami A E, Al-Hajri A et al 2019 J. Electroanal. Chem. 832 225

    CAS  Google Scholar 

  17. Zheng P, Liu T, Su Y, Zhang L and Guo S 2016 Sci. Rep. 6 36580

    CAS  Google Scholar 

  18. Galstyan V, Ponzoni A, Kholmanov I, Natile M M, Comini E, Nematov S et al 2018 ACS Appl. Nano Mater.1 7098

    CAS  Google Scholar 

  19. Lazarte J P L, Dipasupil R C, Pasco G Y S, Eusebio R C P, Orbecido A H, Doong R et al 2018 Nanomaterials8 934

    Google Scholar 

  20. Tho N T, Mai N T T, Van N T, Phat B D, Hieu L V, Thi C M et al 2019 J. Nanosci. Nanotechnol. 19 5195

    Google Scholar 

  21. Chen C, Cai W, Long M, Zhou B, Wu Y, Wu D et al 2010 ACS Nano4 6425

    CAS  Google Scholar 

  22. Rambabu Y, Jaiswal M and Roy S C 2016 AIP Adv. 6 115010

    Google Scholar 

  23. Rajender G, Kumar J and Giri P K 2018 Appl. Catal. B 224 960

    CAS  Google Scholar 

  24. Hamandi M, Berhault G, Guillard C and Kochkar H 2017 Appl. Catal. B 209 203

    CAS  Google Scholar 

  25. Triki M, Tanazefti H and Kochkar H 2017 J. Colloid Interface Sci. 493 77

    CAS  Google Scholar 

  26. Botas C, Alvarez P, Blanco C, Santamaria R, Granda M, Ares P et al 2012 Carbon50 275

  27. Sutar D S, Singh G and Botcha D V 2012 Appl. Phys. Lett. 101 103103

    Google Scholar 

  28. Guo J J, Zhu S M, Chen Z X, Li Y, Yu Z Y, Liu Q L et al 2011 Ultrason. Sonochem. 18 1082

    CAS  Google Scholar 

  29. Barnard A S and Zapol P 2004 J. Phys. Chem. B 108 18435

    CAS  Google Scholar 

  30. Barnard A S, Zapol P and Curtiss L A 2005 J. Chem. Theory Comput. 1 107

    CAS  Google Scholar 

  31. Sun Y, Egawa T, Zhang L and Yao X 2002 Jpn. J. Appl. Phys. 41 L945

    CAS  Google Scholar 

  32. Li G, Li L, Boerio-Goates J and Woodfield B F 2005 J. Am. Chem. Soc. 127 8659

    CAS  Google Scholar 

  33. Ghosh T B, Dhabal S and Datta A K 2003 J. Appl. Phys. 94 4577

    CAS  Google Scholar 

  34. Gouma P I and Mills M J 2001 J. Am. Ceram. Soc. 84 619

    CAS  Google Scholar 

  35. Zhang J, Xu Q, Feng Z, Li M and Li C 2008 Angew. Chem. Int. Ed. 47 1766

    CAS  Google Scholar 

  36. Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A and Saito R 2007 Phys. Chem. Chem. Phys. 9 1276

    CAS  Google Scholar 

  37. Zhang W, Cui J, Tao C A, Wu Y, Li Z, Ma L et al 2009 Angew. Chem. In. Ed. 48 5864

    CAS  Google Scholar 

  38. Dreyer D R, Park S, Bielawski C W and Ruoff R S 2010 Chem. Soc. Rev. 39 228

    CAS  Google Scholar 

  39. Ramesha G K and Sampath S 2009 J. Phys. Chem. C 113 7985

    CAS  Google Scholar 

  40. Yoo E, Okata T, Akita T, Kohyama M, Nakamura J and Honma I 2009 Nano Lett. 9 2255

    CAS  Google Scholar 

  41. Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y et al 2007 Carbon45 1558

    CAS  Google Scholar 

  42. Acik M, Mattevi C, Gong C, Lee G, Cho K, Chhowalla M et al 2010 ACS Nano4 5861

    CAS  Google Scholar 

  43. Zhou X Z, Huang X, Qi X Y, Wu S X, Xue C, Boey F Y C et al 2009 J. Phys. Chem. C113 10842

    CAS  Google Scholar 

  44. Hu C, Chen F, Lu T, Lian C, Zheng S and Zhang R 2014 Mater. Lett. 121 209

  45. Rourke J P, Pandey P A, Moore J J, Bates M, Kinloch I A, Young R J et al 2011 Angew. Chem. Int. Ed. 50 3173

    CAS  Google Scholar 

  46. Wild U, Pfander N and Schlogl R 1997 Fresenium J. Anal. Chem. 357 420

  47. Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S and Takeuchi K 2000 J. Mol. Catal. A161 205

  48. Barklie R C 2003 Diamond Relat. Mater. 12 1427

    CAS  Google Scholar 

  49. Yu J, Ma T and Liu S 2011 Phys. Chem. Chem. Phys.13 3491

    CAS  Google Scholar 

  50. Aronne A, Fantauzzi M, Imparato C, Atzei D, De Stefano L, D’Errico G et al 2017 RSC Adv. 7 2373

  51. Leary R and Westwood A 2011 Carbon 49 741

    CAS  Google Scholar 

  52. Williams G, Seger B and Kamat P V 2008 ACS Nano 2 1487

    CAS  Google Scholar 

  53. Sagadevan S, Pal K, Koteeswari P and Subashini A 2017 J. Mater. Sci.: Mater. Electron. 28 7892

    CAS  Google Scholar 

  54. Dubey P K, Tripathi P, Tiwari R S, Sinha A S K and Srivastava O N 2014 Int. J. Hydrogen Energy39 16282

    CAS  Google Scholar 

  55. Xiang Q, Yu J and Jaroniec M 2011 Nanoscale 3 3670

    CAS  Google Scholar 

  56. Jonscher A K 1983 Dielectric relaxation in solids (London: Chelsea Dielectrics Press) 1st edn

  57. Huber B, Brodyanski A, Scheib M, Orendorz A, Ziegler C and Gnaser H 2005 Thin Solid Films472 114

    CAS  Google Scholar 

  58. Selmi A, Khaldi O, Mascot M, Jomni F and Carru J C 2016 J. Mater. Sci.: Mater. Electron. 27 11299

Download references

Acknowledgements

We gratefully acknowledge the help of Prof Faouzi Hosni from CNSTN (Tunisia) for EPR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Triki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 418 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamandi, M., Triki, M., Llorca, J. et al. Investigation of physicochemical and electrical properties of \(\hbox {TiO}_{{2}}\) nanotubes/graphene oxide nanocomposite. Bull Mater Sci 43, 109 (2020). https://doi.org/10.1007/s12034-020-2072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2072-1

Keywords

Navigation