Skip to main content
Log in

Impedance variation with different relative humidities of PAni/Mn nanofibres

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents the humidity sensing properties of surface-modified polyaniline (PAni). In this study, the impedance response and dielectric properties of pure- and doped-PAni have been investigated as a function of relative humidity (RH%) and frequency. PAni and PAni/Mn composite samples are synthesized by one-step interfacial polymerization process. The structural properties and surface morphologies of the prepared materials have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. XRD confirms the formation of PAni and it shows semi-crystalline behaviour. FESEM shows granular, porous and well-distributed structure. It has been observed that the porosity and nanogranular structure increased with increasing doping percentage. Here, we observe that porous and granular structure of Mn-doped PAni shows better response and recovery time (\({\sim }28\hbox { s}\)) and decreases in electrical impedance. Dielectric constants, dielectric loss and AC conductivity have also been discussed with variations in frequency and relative humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Malenahalli H N, Nanjanagudu G G and Yoon-Bo S 2017 Appl. Mater. Today 9 419

    Google Scholar 

  2. Stefan C, Anna M and Marian Z 2018 Polym. Test. 67 342

    Google Scholar 

  3. Toshiaki O 2012 Int. J. Corros., Article ID 915090 7

  4. Deshpande N G, Gudage Y G, Ramphal S, Vyas J C, Kim J B and Lee Y P 2009 Sens. Actuators B Chem. 138 76

    CAS  Google Scholar 

  5. Sikarwar S and Yadav B C 2015 Sens. Actuators A Phys. 233 54

    CAS  Google Scholar 

  6. Blank T A, Eksperiandova L P and Belikov K N 2016 Sens. Actuators B Chem. 228 416

    CAS  Google Scholar 

  7. Alwis L, Sun T and Grattan K T V 2013 Measurement 46 4052

    Google Scholar 

  8. Garcia L R and Lunadei L 2011 Comput. Electron. Agr. 79 42

    Google Scholar 

  9. Swanson A J, Raymond S G, Janssens S, Breukers R D, Bhuiyan M D H, Lovell-Smith J W et al 2016 Sens. Actuators A Phys. 249 217

    CAS  Google Scholar 

  10. Das R, Pattanayak A J and Sarat K S 2018 Polym. Nanocomposit. Energy Environ. Appl. p 205, chap 7. https://doi.org/10.1016/B978-0-08-102262-7.00007-6

  11. Nambiar S and Yeow John T W 2011 Biosens. Bioelectron. 26 1825

    CAS  Google Scholar 

  12. Jong M M, Neeta T, Khalil K H, Rajendra N G and Yoon B S 2018 Biosens. Bioelectron. 102 540

    Google Scholar 

  13. Ramya R, Sivasubramanian R and Sangaranarayanan M V 2013 Electrochim. Acta 101 109

    CAS  Google Scholar 

  14. Kuilla T, Bhadra S, Yao D, Kim N H, Bose S and Lee J H 2010 Prog. Polym. Sci. 35 1350

    CAS  Google Scholar 

  15. Yang L and Mujie Y 2012 Sens. Actuators B Chem. 161 967

    Google Scholar 

  16. Milind V K, Sanjay K A, Sonali D N, Jalindar D A and Bharat B K 2013 Sens. Actuators B Chem. 178 140

    Google Scholar 

  17. Ilaria F, Iole V, Cesare C and Maria V R 2015 Sens. Actuators B Chem. 220 534

    Google Scholar 

  18. Mehrnaz J, Amir H N and Mehdi N 2014 Adv. Polym. Tech. 33 1

    Google Scholar 

  19. Ramaprasad A T and Vijayalakshmi R 2010 Sens. Actuators B Chem. 148 117

    CAS  Google Scholar 

  20. Song E and Choi J-W 2013 Nanomaterials 3 498

    CAS  Google Scholar 

  21. Liming W,  Qin Y,  Hui B,  Fuqiang H,  Qun W and Lidong C 2015 J. Mater. Chem. A 15 7086

    Google Scholar 

  22. Vineet K S,  Poonam Y, Raghvendra S Y, Priya M and Avinash C P 2012 Nanoscale 4 3886

    Google Scholar 

  23. Benson J, Kovalenko I, Boukhalfa S, Lashmore D, Sanghadasa M and Yushin G 2013 Adv. Mater. 25 6625

    CAS  Google Scholar 

  24. Qingqing C, Meixiang N and Ying G 2018 Sens. Actuators B Chem. 254 30

    Google Scholar 

  25. Rachna R, Sheetal C, Nidhi C, Tulika D and Pundir C S 2012 Int. J. Biol. Macromol. 50 112

    Google Scholar 

  26. Nanjundan A K, Hyun J C, Yeon R S, Dong W C, Liming D and Jong B B 2012 ACS Nano 6 1715

    Google Scholar 

  27. Jain S, Chakane S, Samui A B, Krishnamurthy V N and Bhoraskar S V 2003 Sens. Actuators B96 124

    CAS  Google Scholar 

  28. Parvatikar N, Jain S, Khasim S, Revansiddappa M, Bhoraskar S V and Ambika Prasad M V N 2006 Sens. Actuators B114 599

    CAS  Google Scholar 

  29. Pandey S 2016 J. Sci. Adv. Mater. Devices1 431

    Google Scholar 

  30. McGovern S T, Spinks G M and Wallace G G 2005 Sens. Actuators B Chem. 107 657

    CAS  Google Scholar 

  31. Aussawasathien D, Dong J H and Dai L 2005 Synth. Met. 154 37

    CAS  Google Scholar 

  32. Pouget J P 1991 Macromolecules 24 779

    CAS  Google Scholar 

  33. Borah R, Banerjee S and Kumar A 2014 Synth. Met. 197 225

    CAS  Google Scholar 

  34. Gupta K, Jana P C and Meikap A K 2010 Synth. Met. 160 1566

    CAS  Google Scholar 

  35. Xingbin Y, Zhixin T, Jiangtao C and Qunji X 2011 Nanoscale 3 212

    Google Scholar 

  36. Chiou N R and Epstein A J 2005 Adv. Mater. 17 1679

    CAS  Google Scholar 

  37. Jozefowicz M E, Laversanne R, Javadi H H S, Epstein A J, Pouget J P, Tang X et al 1989 Phys. Rev. B 39 12958

    CAS  Google Scholar 

  38. Cosmin L, Zujovic Z D and Travas-Sejdic J 2009 Macromol. Rapid Commun. 30 1663

    Google Scholar 

  39. Jiaxing Huang and Richard B Kaner 2004 J. Am. Chem. Soc. 126 851

  40. Shishov M A, Moshnikov V A and Sapurina I Y 2013 Chem. Pap. 67 909

    CAS  Google Scholar 

  41. Zhou Y K, He B L, Zhou W J, Huang J, Li X H, Wu B et al 2004 Electrochim. Acta 49 257

    CAS  Google Scholar 

  42. Jaroslav S, Irina S, Miroslava T and Elena N K 2008 Macromolecules 41 3530

    Google Scholar 

  43. Jain S, Chakane S, Samui A B, Krishnamurthy V N and Bhoraskar S V 2003 Sens. Actuators B Chem. 96 124

  44. Fuke M V, Kanitkar P, Kulkarni M, Kale B B and Aiyer R C 2010 Talanta 81 320

    CAS  Google Scholar 

  45. Tuccimei P, Moroni M and Norcia D 2006 Appl. Radiat. Isot. 64 254

    CAS  Google Scholar 

  46. Khalil J H 2014 Appl. Modern Sci. 8 124

    Google Scholar 

  47. Sui G, Jana S, Zhong W H, Fuqua M A and Ulven C A 2008 Acta Mater. 56 2381

    CAS  Google Scholar 

  48. Prem Nazeer K, Jacob S A, Thamilselvan M, Mangalaraj D, Narayandass S K and Junsin Yi 2004 Polym. Int. 53 898

    Google Scholar 

  49. Choudhury A 2009 Sens. Actuators B Chem. 138 318

    CAS  Google Scholar 

  50. Jain A, Sagar P and Mehra R M 2007 Mater. Sci.—Poland 25 237

  51. Imene B A 2015 J. Nanomater. Article ID 516902

Download references

Acknowledgements

We are grateful to UP state government through the Centre of Excellence Scheme for providing XRD facility at the Department of Physics, University of Lucknow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R K Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, D., Shukla, R.K. Impedance variation with different relative humidities of PAni/Mn nanofibres. Bull Mater Sci 43, 95 (2020). https://doi.org/10.1007/s12034-020-2063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2063-2

Keywords

Navigation