Skip to main content
Log in

A study on defect annealing in GaAs nanostructures by ion beam irradiation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, annealing of deep level (EL2) defect in gallium arsenide (GaAs) nanostructures by argon ion beam irradiation has been reported. GaAs nanodots of diameter ranging from 15 to 22 nm were deposited on silicon substrates using the ions of GaAs generated by hot, dense and extremely non-equilibrium argon plasma in a modified dense plasma focus device. GaAs nanodots thus obtained were irradiated by \(\hbox {Ar}^{2+}\) ion beam of energy 200 keV with varying ion fluences from \(1 \times 10^{13 }\) to \(5 \times 10^{15}\) ions \(\hbox {cm}^{-2}\) in the low energy ion-beam facility. The ion-beam irradiation transformed the as-deposited GaAs nanodots into uniform GaAs nanostructured films of thickness \(\sim \)30 nm. The obtained nanostructured films are polycrystalline with paucity of arsenic antisite (EL2) deep level defect. The excess arsenic present in the as-deposited GaAs nanodots is the main cause of EL2 defect. Raman and photoluminescence measurements of GaAs nanostructured films indicates removal of excess arsenic, which was present in as-deposited GaAs nanodots, thereby suggesting annealing of EL2 defect from the ion-irradiated GaAs nanostructured films. The change in conductivity type from n- to p-type obtained from Hall measurement further confirms annealing of EL2 defects. The ion-irradiated GaAs nanostructured films have low leakage current due to removal of defects as obtained in current–voltage study, which corroborate the annealing of EL2 defect. The defect-free GaAs nanostructured films thus obtained have potential applications in fabrication of highly efficient optoelectronic and electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yokoyama H 1992 Science Today 256 66

    CAS  Google Scholar 

  2. Smith A M and Nie S 2010 Acc. Chem. Res. 43 190

    Article  CAS  Google Scholar 

  3. Valiev R 2002 Nature 419 887

    Article  CAS  Google Scholar 

  4. Krasheninnikov A V and Nordlund K 2010 J. Appl. Phys. 107 071301

    Article  Google Scholar 

  5. Krasheninnikov A V and Banhart F 2007 Nat. Mater. 7 723

    Article  Google Scholar 

  6. Smith F W, Le H Q, Diadiuk V, Hollis M A, Calawa A R, Gupta S et al 1989 Appl. Phys. Lett. 54 890

    Article  CAS  Google Scholar 

  7. Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F et al 2011 Nat. Photonics 5 416

    Article  CAS  Google Scholar 

  8. Boucher J and Boettcher S 2017 J. Appl. Phys. 121 093102

    Article  Google Scholar 

  9. Naz N A, Qurashi U S and Iqbal M Z 2009 J. Appl. Phys. 106 103704

    Article  Google Scholar 

  10. Mangla O, Roy S and Srivastava M P 2014 Adv. Sci. Eng. Med. 6 1200

    Article  CAS  Google Scholar 

  11. Lo C J, Aref T and Bezryadin A 2006 Nanotechnology 17 3264

    Article  CAS  Google Scholar 

  12. Bhoraskar V N 2001 Curr. Sci. 80 1567

    CAS  Google Scholar 

  13. Dhamodaran S, Sathish N, Pathak A P, Khan S A, Avasthi D K, Srinivasan T et al 2006 J. Phys.: Condens. Matter 18 4135

    CAS  Google Scholar 

  14. Sharma A T, Shahnawaz, Kumar S, Katharria Y S and Kanjilal D 2007 Appl. Surf. Sci. 254 459

    Article  CAS  Google Scholar 

  15. Mohanta S K, Soni R K, Gosvami N, Tripathy S and Kanjilal D 2007 Appl. Surf. Sci. 253 4531

    Article  CAS  Google Scholar 

  16. Venugopal V, Garg S K, Basu T, Sinha O P, Kanjilal D, Bhattacharyya S R et al 2012 Appl. Surf. Sci. 258 4144

    Article  CAS  Google Scholar 

  17. Kumar T, Khan S A, Singh U B, Verma S and Kanjilal D 2012 Appl. Surf. Sci. 258 4148

    Article  CAS  Google Scholar 

  18. Kumar T, Kumar M, Gupta G, Pandey R K, Verma S and Kanjilal D 2012 Nanoscale Res. Lett. 7 552

    Article  Google Scholar 

  19. Tunhuma S M, Auret F D, Legodi M J and Diale M 2016 J. Appl. Phys. 119 145705

    Article  Google Scholar 

  20. Mangla O, Roy S, Annapoorni S and Asokan K 2018 Mater. Lett. 217 231

    Article  CAS  Google Scholar 

  21. Mather J W 1964 Phys. Fluids 7 S28

    Article  Google Scholar 

  22. Mangla O and Srivastava M P 2013 J. Mater. Sci. 48 304

    Article  CAS  Google Scholar 

  23. Mangla O and Roy S 2015 Mater. Lett. 143 48

    Article  CAS  Google Scholar 

  24. Mangla O, Roy S and Ostrikov K 2016 Nanomaterials 6 4

    Article  Google Scholar 

  25. Gant T A, Shen H, Flemish J R, Fotiadis L and Dutta M 1992 Appl. Phys. Lett. 60 1453

    Article  CAS  Google Scholar 

  26. Ding R and Wang H 2002 Mater. Chem. Phys. 77 841

    Article  Google Scholar 

  27. Duan X, Wang J and Lieber C M 2000 Appl. Phys. Lett. 76 1116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to central facility available at USIC, University of Delhi, for characterizing the samples. We would also like to thank Mr Bora for FESEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onkar Mangla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangla, O., Roy, S., Annapoorni, S. et al. A study on defect annealing in GaAs nanostructures by ion beam irradiation. Bull Mater Sci 43, 78 (2020). https://doi.org/10.1007/s12034-020-2044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2044-5

Keywords

Navigation