Skip to main content
Log in

Photo-induced hydrogenation and rapid cooling measure on dislocation clusters of multi-crystalline silicon PERC solar cells

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The dislocations are the deep level defects with a negative impact on the multi-crystalline silicon (mc-Si) solar cells. Though potential mechanisms of dislocation formation on the silicon ingot have been studied, few investigations consider the effect of LED hydrogenation on dislocation clusters. In this study, we have explored the influence of hydrogenation on the dislocation clusters of large-area (244.34 ± 0.05 cm2) mc-Si solar cells using the high-intensity infrared LED source. However, applying normal cooling measure to hydrogenation will trigger the instability of the hydrogenation improvement effect due to residual thermal stress, so we proposed an appropriate rapid cooling measure (RCM) followed by hydrogenation and achieved optimized results. The results indicated that electrical properties, minority carrier lifetime, current density, power density and external quantum efficiency were enhanced through LED hydrogenation and RCM, and the degradation of mc-Si solar cells also was significantly suppressed. To estimate the content of dislocations after LED hydrogenation and RCM, we applied the X-ray diffraction techniques to calculate the dislocation density using the full-width at half maximum of the rocking curve at (111), (220), (311), (400) and (331) reflections. The dislocation density of mc-Si PERC solar cells was decreased by 0.12 × 108 cm−2 (±0.02 × 108 cm−2) after LED hydrogenation and RCM. Meanwhile, photoluminescence images also illustrated that LED hydrogenation passivated dislocation clusters as well as impurities and defects gathered by dislocations. Therefore, LED hydrogenation of dislocation clusters is an effective measure to improve the performance of dislocation-containing mc-Si solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hartman K, Bertoni M, Serdy J and Buonassisi T 2008 Appl. Phys. Lett. 93 Article ID 122108

  2. Schultz O, Glunz S W, Riepe S and Willeke G P 2006 Prog. Photovolt. Res. Appl. 14 711

    Article  CAS  Google Scholar 

  3. Divigalpitiya W M R, Morrison S R, Vercruysse G, Praet A and Gomes W P 1987 Sol. Energy Mater. 15 141

    Article  CAS  Google Scholar 

  4. Hallam B J, Hamer P G, Wang S S, Song L H, Nampalli N, Abbott M D et al 2015 Energy Procedia 77 799

    Article  CAS  Google Scholar 

  5. Stoddard N, Wu B, Witting I, Wagener M C, Park Y, Rozgonyi G A et al 2007 Solid State Phenomena 131 1

    Article  Google Scholar 

  6. Gu X, Yu X, Guo K, Chen L, Wang D and Yang D 2012 Sol. Energy Mater. Sol. Cells 101 95

    Article  CAS  Google Scholar 

  7. Möller H J, Funke C, Lawerenz A, Riedel S and Werner M 2002 Sol. Energy Mater. Sol. Cells 72 403

    Article  Google Scholar 

  8. Ryningen B, Stokkan G, Kivambe M, Ervik T and Lohne O 2011 Acta Mater. 59 7703

    Article  CAS  Google Scholar 

  9. Takahashi I, Usami N, Kutsukake K, Stokkan G, Morishita K and Nakajima K 2010 J. Cryst. Growth 312 897

    Article  CAS  Google Scholar 

  10. Imaizumi M, Ito T, Yamaguchi M and Kaneko K 1997 J. Appl. Phys. 81 7635

    Article  CAS  Google Scholar 

  11. Bondarenko A S, Vyvenko O F and Isakov I A 2013 Semiconductors 47 259

    Article  CAS  Google Scholar 

  12. Sopori B 2002 J. Electron. Mater. 31 972

    Article  CAS  Google Scholar 

  13. Bertoni M I, Hudelson S, Newman B K, Fenning D P, Dekkers H F, Cornagliotti E et al 2011 Prog. Photovolt. Res. Appl. 19 187

    Article  CAS  Google Scholar 

  14. Parida B, Lim G, Choi J, Palei S and Kim K 2015 Solar Energy 122 486

    Article  CAS  Google Scholar 

  15. Vyvenko O F, Kittler M and Seifert W 2005 Solid State Phenomena 108 151

    Article  Google Scholar 

  16. Song L H, Mai L and Wenham S 2015 Solar Energy 122 341

    Article  CAS  Google Scholar 

  17. Song L H, Wenham A and Wenham S 2016 Sol. Energy Mater. Sol. Cells 149 221

    Article  CAS  Google Scholar 

  18. Song L H, Lou J, Fu J and Ji Z 2018 Electron. Mater. Lett. 14 1

    Article  Google Scholar 

  19. Hamer P, Hallam B, Wenham S and Abbott M 2014 IEEE J. Photovolt. 4 1252

    Article  Google Scholar 

  20. Hamer P, Wang S, Hallam B, Wenham S, Chong C M, Wenham A et al 2015 Phys. Status Solidi (RRL) Rapid Res. Lett. 9 111

    Article  CAS  Google Scholar 

  21. Dube C and Hanoka J I 1984 Appl. Phys. Lett. 45 1135

    Article  CAS  Google Scholar 

  22. Kveder V, Kittler M and Schröter W 2001 Phys. Rev. B 63 Article ID 115208

  23. Xi X, Shao J B, Li C, Liu G L, Li G H, Zhu Y Q et al 2017 J. Renew. Sustain. Ener. 9 Article ID 053502

  24. Shao J B, Xi X, Liu G L, Li S M, Peng R Y, Chen G Q et al 2020 Bull. Mater. Sci. 43 262

    Article  CAS  Google Scholar 

  25. Shao J B, Xi X, Li S M, Liu G L, Peng R Y, Li C et al 2019 Opt. Commun. 450 252

    Article  CAS  Google Scholar 

  26. Shao J B, Xi X, Li C, Liu G L, Li G H, Zhu Y Q et al 2018 J. Renew. Sustain. Ener. 10 Article ID 013507

  27. Li C, Shao J B, Xi X, Liu G L, Li G H, Zhu Y Q et al 2018 Optoelectron. Adv. Mat. 12 322

    CAS  Google Scholar 

  28. Song L H, Zheng X, Fu J and Ji Z 2017 J. Alloys Compd. 698 892

    Article  CAS  Google Scholar 

  29. Sinton R A, Cuevas A and Stuckings M 1996 Proc. 25th IEEE Photovolt. Spec. Conf. 1996 457

    Google Scholar 

  30. Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780

    Article  CAS  Google Scholar 

  31. Ayers J E 1994 J. Cryst. Growth 135 71

    Article  CAS  Google Scholar 

  32. Sun Y T and Lourdudoss S 2003 Proc. SPIE, Photonics Packaging and Integration III 4997 221

  33. Ayers J E, Schowalter L J and Ghandhi S K 1992 J. Cryst. Growth 125 329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support provided by Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grants no. KYCX19_1858), National Natural Science Foundation of China (Grant no. 61804066), Natural Science Foundation of Jiangsu Province (Grants no. BK20180596, BK20180601), China Postdoctoral Science Foundation (2020M671602), Jiangsu Postdoctoral Science Foundation (2018K112C) (2020K143B) and Lab and Equipment Management of Jiangnan University (JDSYS201906). Thanks to Wuxi Suntech Power Co. Ltd., for providing the test silicon cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Xi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., Xi, X., Liu, G. et al. Photo-induced hydrogenation and rapid cooling measure on dislocation clusters of multi-crystalline silicon PERC solar cells. Bull Mater Sci 44, 48 (2021). https://doi.org/10.1007/s12034-020-02335-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02335-9

Keywords

Navigation