Skip to main content
Log in

Structural and optical studies of cerium doped gadolinium oxide phosphor

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This research aims to study the influence of variation of doping concentration on various properties of Ce3+ doped Gd2O3 phosphor. The phosphors (Gd1−xCex)2O3 (0 ≤ x ≤ 0.15) were successfully synthesized by the solution combustion method. The structural and optical properties of the prepared phosphors were studied. Rietveld refinement confirms the formation of the cubic phase. Fourier transform infrared spectra further confirm the formation of the phosphor. It is found that an enhancement in doping concentration of Ce3+ results in the expansion of the crystal lattice, leading to a reduction in crystallite size as well as in the optical band gap. Photoluminescence emission spectra are studied, and the exact emission colour is confirmed using 1931 Commission Internationale de l’Eclairage (CIE) chromaticity coordinates. The prepared phosphor exhibits bluish green emission corresponding to 5d–4f transitions of the trivalent cerium ion and can be used as a promising candidate in optical display applications and LED applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Jia D, Lu L and Yen W M 2002 Opt. Commun. 212 97

    Article  CAS  Google Scholar 

  2. Jia G, Liu K, Zheng Y, Song Y, Yang M and You H 2009 J. Phys. Chem. C 113 6050

    Article  CAS  Google Scholar 

  3. Kuan Woo B, Joly A G and Chen W 2011 J. Lumin. 131 49

    Article  Google Scholar 

  4. Singh S, Khatkar S P, Kumar D and Taxak V B 2015 J. Sol-Gel Sci. Technol. 74 24

    Article  CAS  Google Scholar 

  5. Abhilash Kumar R G, Hata S, Ikeda K I and Gopchandran K G 2015 Ceram. Int. 41 6037

    Article  CAS  Google Scholar 

  6. Guerbous L and Krachni O 2006 J. Mod. Opt. 53 2043

    Article  CAS  Google Scholar 

  7. Nagpure I M, Pitale S S, Tshabalala K G, Kumar V, Ntwaeaborwa O M, Terblans J J et al 2011 Mater. Res. Bull. 46 2359

    Article  CAS  Google Scholar 

  8. Park J M, Ha D H, Kaewjeang S, Maghanemi U, Kothan S, Kaewkhao J et al 2015 Radiat. Meas. https://doi.org/10.1016/j.radmeas.2015.12.028

  9. He X, Liu X, Li R, Yang B, Yu K, Zeng M et al 2016 Sci. Rep. 6 1

    Article  Google Scholar 

  10. Guerbous L and Boukerika A 2015 J. Nanomater. https://doi.org/10.1155/2015/617130

    Article  Google Scholar 

  11. Kumar R G A and Gopchandran K G 2015 IOP Conf. Ser. Mater. Sci. Eng. 73 012122

    Article  Google Scholar 

  12. Selvalakshmi T and Bose A C 2012 Adv. Mater. Res. 585 105

    Article  CAS  Google Scholar 

  13. Hadke S S, Kalimila M T, Rathkanthiwar S, Sonkusare R, Gour S and Ballal A 2015 Mater. Today Proc. 2 1276

    Article  CAS  Google Scholar 

  14. Rudraswamy B and Dhananjaya N 2012 IOP Conf. Ser. Mater. Sci. Eng. 40 012034

    Article  Google Scholar 

  15. Kumar R G A, Hata S, Ikeda K and Gopchandran K G 2016 RSC Adv. 6 67295

    Article  CAS  Google Scholar 

  16. Tamrakar R K, Bisen D P, Upadhyay K, Sahu I P and Sahu M 2016 RSC Adv. 6 92360

    Article  CAS  Google Scholar 

  17. Aruna S T and Mukasyan A S 2008 Curr. Opin. Solid State Mater. Sci. 12 44

    Article  CAS  Google Scholar 

  18. Tamrakar R K, Bisen D P, Upadhyay K and Bramhe N 2015 Superlattices Microstruct. 81 34

    Article  CAS  Google Scholar 

  19. Jadhav A P, Oh J H, Park S W, Choi H, Moon B K, Choi B C et al 2016 Curr. Appl. Phys. 16 1374

    Article  Google Scholar 

  20. Marin R, Back M, Mazzucco N, Enrichi F, Frattini R, Benedetti A et al 2013 Dalton Trans. 42 16837

    Article  CAS  Google Scholar 

  21. Li Z Q, Lu C J, Xia Z P, Zhou Y and Luo Z 2007 Carbon N Y 45 1686

    Article  CAS  Google Scholar 

  22. Meetei S D and Singh S D 2014 J. Lumin. 147 328

    Article  CAS  Google Scholar 

  23. Priya R and Pandey O P 2019 J. Lumin. 212 342

    Article  CAS  Google Scholar 

  24. Safeera T A and Anila E I 2019 J. Lumin. 205 277

    Article  CAS  Google Scholar 

  25. Jisha P K, Naik R, Prashantha S C, Nagaswarupa H P, Nagabhushana H, Basavaraj R B et al 2016 Mater. Res. Express. 3 1

    Article  Google Scholar 

  26. Som S and Sharma S K 2012 J. Phys. D: Appl. Phys. 45 415102

    Article  Google Scholar 

  27. Vegard Y L 1921 Zeitschrift fur Phys. 5 17

    Article  CAS  Google Scholar 

  28. Chelliah M and Rayappan J B B 2012 J. Appl. Sci. 12 1734

    Article  CAS  Google Scholar 

  29. Kumar R G A, Hata S and Gopchandran K G 2013 Ceram. Int. 39 9125

    Article  CAS  Google Scholar 

  30. Sharma A and Sanjay Kumar P 2012 Nanosci. Nanotechnol. 2 82

    Article  Google Scholar 

  31. Jisha P K, Prashantha S C and Nagabhushana H 2012 J. Sci. Adv. Mater. Devices 2 437

    Article  Google Scholar 

  32. Sharma A, Chakraborty M, Thangavel R and Udayabhanu G 2018 J. Sol-Gel Sci. Technol. 85 1

    Article  CAS  Google Scholar 

  33. Yong X and Schoonen M A A 2000 Am. Mineral. 85 543

    Article  Google Scholar 

  34. Tamrakar R K, Bisen D P and Brahme N 2014 J. Radiat. Res. Appl. Sci. 7 550

    Google Scholar 

  35. Vetrone F, Boyer J C, Capobianco J A, Speghini A and Bettinelli M 2003 Chem. Mater. 15 2737

    Article  CAS  Google Scholar 

  36. Das S, Chang C C, Yang C Y, Som S and Lu C H 2015 Mater. Charact. 106 20

    Article  CAS  Google Scholar 

  37. Li J G and Sakka Y 2015 Sci. Technol. Adv. Mater. 16 18

    Google Scholar 

  38. Okada K, Kaizu Y, Kobayashi H, Tanaka K and Marumo F 1985 Mol. Phys. 54 1293

    Article  CAS  Google Scholar 

  39. Du Y, Shao C Y, Dong Y J, Yang Q H and Hua W 2015 Chinese Phys. B 24 117801

    Article  Google Scholar 

  40. Bakr M, Kaynar U H, Ayvacikli M, Benourdja S, Karabulut Y, Hammoudeh A et al 2020 Mater. Res. Bull. https://doi.org/10.1016/j.materresbull.2020.111010

    Article  Google Scholar 

  41. Reenabati D K, Dorendrajit S S and David S T 2018 Indian J. Phys. 92 725

    Article  Google Scholar 

  42. Shougaijam D S, Konsam R D and Sanoujam D M 2015 Int. J. Lumin. Appl. 5 388

    Google Scholar 

  43. Wang F, Wang J and Liu X 2010 Angew. Chemie Int. Ed. 49 7456

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J S Revathy wishes to thank the Department of Science and Technology (DST), INSPIRE Fellowship, Govt. of India, for financial assistance (Grant No. IF160231). N S Chitra Priya and K Sandhya acknowledge the University of Kerala, Thiruvananthapuram, Kerala, India, for providing fellowship. We express our sincere gratitude to DST-FIST, for providing characterization instruments in Govt. College for Women, Thiruvananthapuram, Kerala. We also thank STIC, Cochin University, Kerala and SICC, University of Kerala, Thiruvananthapuram, for providing material characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Revathy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revathy, J.S., Priya, N.S.C., Sandhya, K. et al. Structural and optical studies of cerium doped gadolinium oxide phosphor. Bull Mater Sci 44, 13 (2021). https://doi.org/10.1007/s12034-020-02299-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02299-w

Keywords

Navigation