Skip to main content
Log in

Decolourization of rhodamine B and methylene blue dyes in the presence of bismuth tungstates: a detailed investigation on the effect of grain size

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Solid-state reaction method was opted for the preparation of bismuth tungstates (Bi2WO6) in the stoichiometric ratio. The structural characterization related that the material has got orthorhombic symmetry. The high-energy ball milling did not show any structural change, but a reduction in grain size was observed from 100 to 34 nm after 5 h. The higher activity for the decolourization of rhodamine B (RHB) and methylene blue (MB) in the presence of UV light has been studied by employing Bi2WO6 as a catalyst. The dye degradation was observed by a decrease in the absorption spectrum and decolourization in the presence of UV irradiation. The degradation efficiency was found to be dependent on the size of the catalyst added in the dye solution, which may be due to increased surface area that increased the number of active sites for the reaction. The degradation efficiency of the unmilled and 5-h ball milled (Bi2WO6) catalyst was observed to be 32 and 90% in RHB, respectively. While in MB, 24 and 49% degradation efficiency was achieved by unmilled and 5-h ball milled (Bi2WO6) catalyst. The degradation rate coefficient was found to be in the decreasing order of RHB > MB, which pursued the first-order kinetic mechanism. Therefore, Bi2WO6 can act as a catalyst for the treatment of noxious and imperishable organic pollutants in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Nestmann E R, Douglas G R, Matula T I, Grant C E and Kowbel D J 1979 Cancer Res. 39 4412

    CAS  Google Scholar 

  2. Chandler J E, Harrison C M and Canal A M 2000 Theriogenology 54 261

    CAS  Google Scholar 

  3. Youssef N A, Shaban S A, Ibrahim F A and Mahmoud A S 2016 Egypt. J. Pet25 317

    Google Scholar 

  4. Rabah M A 2008 J. Waste Manag. 28 318

    CAS  Google Scholar 

  5. Coolidge W D 1913 Phys. Rev. 2 409

    Google Scholar 

  6. Van Uitert L G and Preziosi S 1962 Int. J. Appl. Phys. 33 2908

    Google Scholar 

  7. Lecoq P, Dafinei I, Auffray E, Schneegans M, Korzhik M V, Missevitch O V et al 1995 Nucl. Instrum. Methods Phys. Res. A 365 291

  8. Baccaro S, Borgia B, Cecilia A, Dafinei I, Diemoz M, Nikl M et al 1998 Radiat. Phys. Chem. 52 635

    CAS  Google Scholar 

  9. Treadaway M J and Powell R C 1975 Phys. Rev. 11 862

    CAS  Google Scholar 

  10. Chen W, Inagawa Y, Omatsu T, Tateda M, Takeuchi N and Usuki Y 2001 Opt. Commun. 194 401

    CAS  Google Scholar 

  11. Ehrenberg H, Weitzel H, Heid C, Fuess H, Wltschek G, Kroener T et al 1997 J. Condens. Matter Phys. 9 3189

    CAS  Google Scholar 

  12. Nagirnyi V, Feldbach E, Jönsson L, Kirm M, Lushchik A, Lushchik C et al 1998 Radiat. Meas. 29 247

    CAS  Google Scholar 

  13. Raj A E S, Mallika C, Sreedharan O M and Nagaraja K S 2002 Mater. Lett. 53 316

    Google Scholar 

  14. Garcia-Perez U M, Martinez-de La Cruz A and Peral J 2012 Electrochim. Acta 81 227

    CAS  Google Scholar 

  15. Sha Z, Sun J, Chan H S O, Jaenicke S and Wu J 2014 RSC Adv. 4 64977

    CAS  Google Scholar 

  16. Rahimi-Nasrabadi M, Pourmortazavi S M, Aghazadeh M, Ganjali M R, Karimi M S and Novrouzi P 2017 J. Mater. Sci.: Mater. Electron. 28 3780

    CAS  Google Scholar 

  17. López X A, Fuentes A F, Zaragoza M M, Guillén J A D, Gutiérrez J S, Ortiz A L et al 2016 Int. J. Hydrog. Energy. 41 23312

    Google Scholar 

  18. Amano F, Nogami K, Abe R and Ohtani B 2008 J. Phys. Chem. 112 9320

    CAS  Google Scholar 

  19. Amano F, Nogami K and Ohtani B 2009 J. Phys. Chem. 113 1536

    CAS  Google Scholar 

  20. Dai X J, Luo Y S, Zhang W D and Fu S Y 2010 Dalton Trans. 39 3426

    CAS  Google Scholar 

  21. Hu T, Li H, Zhang R, Du N and Hou W 2016 RSC Adv. 6 31744

    CAS  Google Scholar 

  22. Issarapanacheewin S, Wetchakun K, Phanichphant S, Kangwansupamonkon W and Wetchakun N 2016 Ceram. Int. 42 16007

    CAS  Google Scholar 

  23. Zhu S, Xu T, Fu H, Zhao J and Zhu Y 2007 Environ. Sci. Technol. 41 6234

    CAS  Google Scholar 

  24. Zhang L, Wang H, Chen Z, Wong P K and Liu J 2011 Appl. Catal. B 106 1

    CAS  Google Scholar 

  25. Yu J, Xiong J, Cheng B, Yu Y and Wang J 2005 J. Solid State Chem. 178 1968

    CAS  Google Scholar 

  26. Xia J, Li H, Luo Z, Xu H, Wang K, Yin S et al 2010 Mater. Chem. Phys. 121 6

    CAS  Google Scholar 

  27. Zhao G, Liu S, Lu Q and Song L 2012 Ind. Eng. Chem. 51 10307

    CAS  Google Scholar 

  28. Zhu Y, Wang Y, Ling Q and Zhu Y 2017 Appl. Catal. B 200 222

    CAS  Google Scholar 

  29. Xiao J, Dong W, Song C, Yu Y, Zhang L, Li C et al 2015 Mater. Sci. Semicond. Process. 40 463

    CAS  Google Scholar 

  30. Phuruangrat A, Dumrongrojthanath P, Ekthammathat N, Thongtem S and Thongtem T 2014 J. Nanomater. 2014 Article ID 138561

  31. Nobre F X, Junior W A G P, Ruiz Y L, Bentes V L I, Silva-Moraes M O, Silva T M C et al 2019 Mater. Res. Bull. 109 60

    CAS  Google Scholar 

  32. Maczka M, Hanuza J, Paraguassu W, Gomes Souza Filho A, Tarso Cavalcante Freire P and Mendes Filho J 2008 Appl. Phys. Lett. 92 112911

  33. Fu H, Pan C, Zhang L and Zhu Y 2007 Mater. Res. Bull. 42 696

    CAS  Google Scholar 

  34. Frost R L, Duong L and Weier M 2004 Spectrochim. Acta A 60 1853

    Google Scholar 

  35. Kania A, Niewiadomski A and Kugel G E 2013 Phase Transit. 86 290

    CAS  Google Scholar 

  36. Mishra R K, Weibel M, Müller T, Heinz H and Flatt R J 2017 Chimia 71 451

    CAS  Google Scholar 

  37. Maczka M, Paraguassu W, Souza Filho A G, Freire P T C, Mendes Filho J and Hanuza J 2008 Phys. Rev. 77 094137

    Google Scholar 

  38. Tkalčević M 2016 Doctoral dissertation (University of Zagreb, Faculty of Chemical Engineering and Technology)

    Google Scholar 

  39. Zhou Y, Zhang Y, Lin M, Long J, Zhang Z, Lin H et al 2015 Nat. Commun. 6 1

    Google Scholar 

  40. Loyalka S K and Riggs C A 1995 J. Appl. Spectrosc. 49 1107

    CAS  Google Scholar 

  41. Fujihara K, Izumi S, Ohno T and Matsumura M 2000 J. Photochem. Photobiol. A 132 99

    CAS  Google Scholar 

  42. Ma Y and Yao J N 1998 J. Photochem. Photobiol. A Chem. 116 167

    CAS  Google Scholar 

  43. Watanabe T, Takizawa T and Honda K 1977 J. Phys. Chem. Lett. 81 1845

    CAS  Google Scholar 

  44. Takizawa T, Watanabe T and Honda K 1978 J. Phys. Chem. Lett. 82 1391

    CAS  Google Scholar 

  45. López S M, Hidalgo M C, Navío J A and Colón G 2011 J. Hazard. Mater. 185 1425

    Google Scholar 

  46. Xian T, Yang H, Xian W, Chen X F and Dai J F 2013 Prog. React. Kinet. Mec. 38 417

    CAS  Google Scholar 

  47. Liu W, Wang M, Xu C and Chen S 2012 Chem. Eng. J. 209 386

    CAS  Google Scholar 

  48. Wang B, Yang H, Xian T, Di L J, Li R S and Wang X X 2015 J. Nanomater Article ID 146327

  49. Tanaka K, Padermpole K and Hisanaga T 2000 Water Res. 34 327

    CAS  Google Scholar 

  50. Gouvea C A, Wypych F, Moraes S G, Duran N, Nagata N and Peralta-Zamora P 2000 Chemosphere 40 433

    CAS  Google Scholar 

  51. Konstantinou I K and Albanis T A 2004 Appl. Catal. B 49 1

    CAS  Google Scholar 

  52. Fu H, Zhang L, Yao W and Zhu Y 2006 Appl. Catal. B: Environ. 66 100

    CAS  Google Scholar 

  53. Morrison S R 1980 Electrochemical at semiconductor and oxidized metal electrodes (New York: Plenum)

  54. Andersen T, Haugen H K and Hotop H 1999 J. Phys. Chem. Ref. Data 28 1511

  55. Dung D, Ramsden J and Gratzel M 1982 J. Am. Chem. Soc. 104 2977

  56. Tachikawa T, Fujitsuka M and Majima T 2007 J. Phys. Chem. 111 5259

  57. Weast R C 1988 Handbook of chemistry and physics 1st edn (Boca Raton, Florida: CRC Press) p 69

Download references

Acknowledgements

One of the author (SK) thanks the Department of Science and Technology, Government of India, for providing financial assistance through the WOS-A Fellowship (SR/WOS-A/CS-128/2018) to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeeb Kumar Rout.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanam, S., Rout, S.K. Decolourization of rhodamine B and methylene blue dyes in the presence of bismuth tungstates: a detailed investigation on the effect of grain size. Bull Mater Sci 44, 2 (2021). https://doi.org/10.1007/s12034-020-02292-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02292-3

Keywords

Navigation