Skip to main content
Log in

Formation of diamond nanostructures from graphite using 10 W fibre laser

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The high activation energy required for graphite–diamond transition limits its applicability in novel areas. To exploit fully the multifunctional properties of diamond in diverse fields, there is a necessity to explore more efficient ways for its synthesis. In this study, we have demonstrated a new approach for nanodiamonds formation by employing a commercially available low power 10 W continuous-wave fibre laser. The laser system is modulated to generate the high-pressure high temperature environment necessary for the phase conversion of graphite to diamond. The microsecond pulse duration combined with liquid confinement effect on plasma provide scope for a lower rate of supercooling, which restricts the epitaxial growth of the crystals. The sample is characterized by X-ray powder diffraction, transmission electron microscope and Raman spectroscopy, confirming the presence of different types of nanodiamonds including newly discovered n-diamond. The process offers many important advantages like scalable process, non-catalyst-based eco-friendly and cost-effective synthesis of metastable nanodiamonds. The results demonstrate the effectuality of inexpensive commercial lasers towards attaining the localized extreme environment necessary for direct phase conversion of diamond materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bormashov V S, Troschiev S Y, Tarelkin S A, Volkov A P, Teteruk D V, Golovanov A V et al 2018 Diam. Relat. Mater. 84 41

    Article  CAS  Google Scholar 

  2. Kin Y, Saito K, Oda H, Ando T and Nakagawa K 2019 Catal. Lett. 149 1

    Article  CAS  Google Scholar 

  3. Prawer S and Greentree A D 2008 Science 320 1601

    Article  CAS  Google Scholar 

  4. Batzer M, Shields B, Neu E, Widmann C, Giese C, Nebel C et al 2020 Opt. Mater. Express. 10 492

    Article  CAS  Google Scholar 

  5. Oh A 2015 J. Instrum. 10 C04038

    Article  Google Scholar 

  6. Tinwala H and Wairkar S 2019 Mater. Sci. Eng. C 97 913

    Article  CAS  Google Scholar 

  7. Danilenko V V 2004 Phys. Solid State 46 595

    Article  CAS  Google Scholar 

  8. Butler J E and Windischmann H 1998 Mater. Res. Bull. 23 22

    Article  CAS  Google Scholar 

  9. Askari S J, Chen G C and Lu F X 2008 Mater. Res. Bull. 43 1086

    Article  CAS  Google Scholar 

  10. Khachatryan A K, Aloyan S G, May P W, Sargsyan R, Khachatryan V A and Baghdasaryan V S 2008 Diam. Relat. Mater. 17 931

    Article  Google Scholar 

  11. Dolmatov V Y 2007 Russ. Chem. Rev. 76 339

    Article  CAS  Google Scholar 

  12. Yang G W, Wang J B and Liu Q X 1998 J. Phys. Condens. Matter 10 7923

    Article  CAS  Google Scholar 

  13. Mochalin V N, Shenderova O, Ho D and Gogotsi Y 2011 Nat. Nanotechnol. 7 11

    Article  Google Scholar 

  14. Sumiya H and Irifune T 2007 J. Mater. Res. 22 2345

    Article  CAS  Google Scholar 

  15. Bai P, Hu S, Zhang T, Sun J and Cao S 2010 Mater. Res. Bull. 45 826

    Article  CAS  Google Scholar 

  16. Sun J, Hu S L, Du X W, Lei Y W and Jiang L 2006 Appl. Phys. Lett. 89 183115

    Article  Google Scholar 

  17. Mortazavi S Z, Parvin P, Reyhani A, Mirershadi S and Bonabi R S 2013 J. Phys. D: Appl. Phys. 46 165303

    Article  Google Scholar 

  18. Amans D, Chenus A C, Ledoux G, Dujardin C, Reynaud C, Sublemontier O et al 2009 Diam. Relat. Mater. 18 177

    Article  CAS  Google Scholar 

  19. Pearce S R J, Henley S J, Claeyssens F, May P W, Hallam K R, Smith J A et al 2004 Diam. Relat. Mater. 13 661

    Article  CAS  Google Scholar 

  20. Maia F C B, Samad R E, Bettini J, Freitas R O, Vieira N D Jr and Souza-Neto N M 2015 Sci. Rep. 5 11812

  21. Yang G W 2007 Prog. Mater. Sci. 52 648

    Article  CAS  Google Scholar 

  22. Glover T E 2003 J. Opt. Soc. Am. B 20 125

    Article  CAS  Google Scholar 

  23. Limpert J, Liem A, Zellmer H and Tünnermann A 2003 Electron. Lett. 39 645

    Article  CAS  Google Scholar 

  24. Pichot V, Comet M, Fousson E, Baras C, Senger A, Normand F L et al 2008 Diam. Relat. Mater. 17 13

    Article  CAS  Google Scholar 

  25. Hoffman J, Chrzanowska J, Kucharski S, Moscicki T, Mihailescu I N, Ristoscu C et al 2014 Appl. Phys. A 117 395

    Article  CAS  Google Scholar 

  26. Berthe L, Fabbro R, Peyre P and Bartnicki E 1998 EPJ Appl. Phys. 3 215

    Article  CAS  Google Scholar 

  27. Harilal S S, Bindhu C V, Issac R C, Nampoori V P N and Vallabhan C P G 1997 J. Appl. Phys. 82 2140

    Article  CAS  Google Scholar 

  28. Basharin A Y, Dozhdikov V S, Dubinchuk V T, Kirillin A V, Lysenko I Y and Turchaninov M A 2009 Tech. Phys. Lett. 35 428

    Article  CAS  Google Scholar 

  29. Wen B, Zhao J, Li T, Dong C and Jin J 2005 J. Phys. Condens. Matter 17 L513

    Article  CAS  Google Scholar 

  30. Wen B, Zhao J J and Li T J 2007 Int. Mater. Rev. 52 131

    Article  CAS  Google Scholar 

  31. Konyashin I, Zern A, Mayer J, Aldinger F, Babaev V, Khvostov V et al 2001 Diam. Relat. Mater. 10 99

    Article  CAS  Google Scholar 

  32. Xiao J, Li J L, Liu P and Yang G W 2014 Nanoscale 6 15098

    Article  CAS  Google Scholar 

  33. Chang L Y, Ōsawa E and Barnard A S 2011 Nanoscale 3 958

    Article  CAS  Google Scholar 

  34. Dunlop A, Jaskierowicz G, Ossi P and Della-Negra S 2007 Phys. Rev. B 76 155403

    Article  Google Scholar 

  35. Xiao J, Ouyang G, Liu P, Wang C X and Yang G W 2014 Nano Lett. 14 3645

    Article  CAS  Google Scholar 

  36. Ferrari A C and Robertson J 2001 Phys. Rev. B 64 075414

    Article  Google Scholar 

  37. Richter H, Wang Z P and Ley L 1981 Solid State Commun. 39 625

    Article  CAS  Google Scholar 

  38. Osswald S, Mochalin V N, Havel M, Yushin G and Gogotsi Y 2009 Phys. Rev. B 80 075419

    Article  Google Scholar 

  39. Ren X D, Yang L M, Zheng L M, Yuan S Q, Tang S X, Ren N F et al 2014 Appl. Phys. Lett. 105 021908

    Article  Google Scholar 

  40. Prawer S, Nugent K W, Jamieson D N, Orwa J O, Bursill L A and Peng J L 2000 Chem. Phys. Lett. 332 93

    Article  CAS  Google Scholar 

  41. Obraztsova E D, Fujii M, Hayashi S, Kuznetsov V L, Butenko Y V and Chuvilin A L 1998 Carbon 36 821

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are thankful to Institute of Nano Science and Technology, Mohali, for providing the necessary facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Prakash, B. & Sharma, D. Formation of diamond nanostructures from graphite using 10 W fibre laser. Bull Mater Sci 43, 279 (2020). https://doi.org/10.1007/s12034-020-02255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02255-8

Keywords

Navigation