Skip to main content
Log in

Dielectric and ferroelectric properties evolution of (1−x)(Bi0.5Na0.5TiO3)–xK0.5Na0.5NbO3 piezoceramics

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, piezoceramics of (1−x)(Bi0.5Na0.5)TiO3x(K0.5Na0.5)NbO3, (1−x)BNT–xKNN, in the compositional range 0.00 ≤ x ≤ 0.07, were prepared by a mechanochemically activated solid-state method. The structural phase formation and microstructural, dielectric, and ferroelectric properties were studied. Although changes, in symmetry of the perovskite structure, were not detected with the composition (i.e., from a perspective of its intrinsic properties), the microstructural evolution was strongly dependent on the content of the KNN phase (i.e., based on its extrinsic properties). Specifically, KNN favoured the formation of a microstructure with cubic grains, typical morphology of the alkaline niobate ceramics. After KNN addition, both the maximum permittivity temperature and the long-range to short-range ordered transition temperature were reduced. Additionally, ferroelectric loops and strain deformation curves also reflect the long-range to short-range order evolution with KNN addition and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Panda P K, Sahoo B and Ramakrishna J 2018 Mater. Today Proc. 5 21512

    CAS  Google Scholar 

  2. Wang L, Chen W, Liu J, Deng Y and Liu Y 2019 Mech. Syst. Signal Pr. 133 106254

    Google Scholar 

  3. Panda P and Sahoo S 2015 Ferroelectrics 474 128

    CAS  Google Scholar 

  4. Zhao Z H, Dai Y and Huang F 2019 SM&T 20 e00092

    CAS  Google Scholar 

  5. Deng G, Ding A, Zheng X, Zeng X and Yin Q 2006 J. Eur. Ceram. Soc. 26 2349

    CAS  Google Scholar 

  6. Wei H, Wang H, Xia Y, Cui D, Shi Y, Dong M et al 2018 J. Mater. Chem. C 6 12446

    CAS  Google Scholar 

  7. Aksel E and Jones J L 2020 Sensors 10 1935

    Google Scholar 

  8. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T et al 2004 Nature 432 84

    CAS  Google Scholar 

  9. Xu Q, Liu H, Song Z, Huang X, Ullah A, Zhang L et al 2016 J. Mater. Sci.: Mater. Electron. 27 322

    CAS  Google Scholar 

  10. Dorcet V, Trolliard G and Boullay P 2008 Chem. Mater. 20 5061

    CAS  Google Scholar 

  11. Waanders J W 1991 Piezoelectric ceramics: Properties and applications (Eindhoven: Philips Components)

    Google Scholar 

  12. Zhou Z H, Xue J M, Li W Z, Wang J, Zhu H and Miao J M 2004 Appl. Phys. Lett. 85 804

    CAS  Google Scholar 

  13. Barick B K, Choudhary R N P and Pradhan D K 2012 Mater. Chem. Phys. 132 1007

    CAS  Google Scholar 

  14. Badapanda T, Sahoo S and Nayak P 2017 IOP Conf. Ser.: Mater. Sci. Eng. 178 012032

  15. Yang H, Yan F, Lin Y, Wang T and Wang F 2017 Sci. Rep. 7 8726

    Google Scholar 

  16. Huang X and Jiang P 2014 Adv. Mater. 27 546

    Google Scholar 

  17. Gao J, Xue D, Liu W, Zhou C and Ren X 2017 Actuators 6 24

    Google Scholar 

  18. Zhang S T, Yan F, Yang B and Cao W 2010 Appl. Phys. Lett. 97 122901

    Google Scholar 

  19. Kounga A B, Zhang S T, Jo W, Granzow T and Rödel J 2008 Appl. Phys. Lett. 92 222902

    Google Scholar 

  20. Ramajo L, Castro M, del Campo A, Fernandez J F F and Rubio-Marcos F 2014 J. Eur. Ceram. Soc. 34 2249

    CAS  Google Scholar 

  21. Camargo J, Ramajo L, Rubio-Marcos F and Castro M S 2014 Bol. Soc. Esp. Ceram. V. 53 27

    CAS  Google Scholar 

  22. Laoratanakul P, Yimnirun R and Wongsaenmai S 2011 Curr. Appl. Phys. 11 S161

    Google Scholar 

  23. Li S, Chen L, Ning X, Guo M and Zhang M 2015 Ceram. Int. 41 195

    CAS  Google Scholar 

  24. Li S, Yue Y, Ning X, Guo M and Zhang M 2014 J. Alloys Compd. 586 248

    CAS  Google Scholar 

  25. Prado-Espinosa A, Camargo J, del Campo A, Rubio-Marcos F and Castro M 2018 J. Alloys Compd. 739 799

    CAS  Google Scholar 

  26. Guo K, Chen S, Tan C K I, Sharifzadeh Mirshekarloo M, Yao K and Tay F E H 2017 J. Am. Ceram. Soc. 100 3385

    CAS  Google Scholar 

  27. Prado-Espinosa A, Castro M and Ramajo L 2017 Ceram. Int. 43 5505

    CAS  Google Scholar 

  28. Chandrasekhar M and Kumar P 2016 Process. Appl. Ceram. 10 73

    CAS  Google Scholar 

  29. Anthoniappen J, Tu C S, Chen P Y, Chen C S, Idzerda Y U and Chiu S J 2015 J. Eur. Ceram. Soc. 35 3495

    CAS  Google Scholar 

  30. Rout D, Moon K S, Kang S J L and Kim I W 2010 J. Appl. Phys. 108 084102

    Google Scholar 

  31. Eerd B W V, Damjanovic D, Klein N and Setter N 2010 Phys. Rev. B 82 104112

    Google Scholar 

  32. Suchanicz J, Jankowska-Sumara I and Kruzina T V 2011 J. Electroceram. 27 45

    CAS  Google Scholar 

  33. Kreisel J, Glazer A M, Jones G, Thomas P A, Abello L and Lucazeau G 2000 J. Phys. Condens. Matter 12 3267

    CAS  Google Scholar 

  34. Fernandez-Benavides D A, Gutierrez-Perez A I, Benitez-Castro A M, Ayala-Ayala M T, Moreno-Murguia B and Muñoz-Saldaña J 2018 Materials 11 361

    Google Scholar 

  35. Camargo J, Prado-Espinosa A, Ramajo L and Castro M 2018 J. Mater. Sci.: Mater. Electron. 29 5427

    CAS  Google Scholar 

  36. Eichel R A 2011 Phys. Chem. Chem. Phys. 13 368

    CAS  Google Scholar 

  37. Hu Q, Wang Y, Yan K, Chen L, Yuan G, Chen J et al 2019 Ceram. Int. 45 17962

    CAS  Google Scholar 

  38. Zuo R, Fang X and Ye C 2007 Appl. Phys. Lett. 90 092904

    Google Scholar 

  39. Rödel J, Jo W, Seifert K T P, Anton E M, Granzow T and Damjanovic D 2009 J. Am. Ceram. Soc. 92 1153

    Google Scholar 

  40. Martin A, Khansur N H, Riess K and Webber K G 2018 J. Eur. Ceram. Soc. 4 1031

    Google Scholar 

  41. Daniels J E, Jo W, Rödel J, Honkimäki V and Jones J L 2010 Acta Mater. 58 2103

    CAS  Google Scholar 

  42. Rawat M and Yadav K L 2013 Ceram. Int. 39 3627

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been possible with the help of the National Council of Scientific and Technical Research (CONICET), the National Agency for Scientific and Technological Promotion (ANPCyT, PICT2014-1314) and the National University of Mar del Plata (UNMdP, 15/G527) and thanks to them for their economic and institutional support. Dr F Rubio-Marcos is also indebted to the MINECO (Spain) project MAT2017-86450-C4-1-R for their financial support. FR-M is indebted to MINECO for a ‘Ramon y Cajal’ contract (ref: RyC-2015-18626), which is co-financed by the European Social Fund. FR-M also acknowledges support from a 2018 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S CASTRO.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PRADO, A., RUBIO-MARCOS, F., RAMAJO, L. et al. Dielectric and ferroelectric properties evolution of (1−x)(Bi0.5Na0.5TiO3)–xK0.5Na0.5NbO3 piezoceramics. Bull Mater Sci 43, 282 (2020). https://doi.org/10.1007/s12034-020-02246-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02246-9

Keywords

Navigation