Skip to main content
Log in

Study of ac conductivity mechanism and impedance spectroscopy in CNT-added Cu5Se75Te10In10 chalcogenide system

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study is devoted to the investigation of electrical properties of multi-walled carbon nanotube (MWCNT)-contaminated Cu-Se-Te-In chalcogenide glassy composite in the temperature range 303–373 K and frequency interval from 1 Hz to 1 MHz. The MWCNT/chalcogenide glass was characterized by means of X-ray diffractometer, field emission scanning electron microscope, impedance spectroscopy and electrical measurements. Electrical conductivity was increased by 10–100 times of magnitude by adding 1 and 2 wt% of MWCNT to it, changing the behaviour from insulator to the semiconductor. This rapid change in the electrical conductivity for carbon nanotube-added glasses is due to the highly conducting behaviour of carbon nanotubes. The data observed from dc conductivity measurement in the temperature range 303–373 K suggest that thermally activated hopping is the dominant conduction mechanism between localized states in band tails, which is explained by Mott’s model. The temperature-dependent relaxation phenomenon has also been examined by a detailed analysis of impedance spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Etacheri V, Marom R, Elazari R, Salitra G and Aurbach D 2011 Energy Environ. Sci. 4 3243

    CAS  Google Scholar 

  2. Armand M and Tarascon J M 2008 Nature 451 652

    CAS  Google Scholar 

  3. Zhang L, Yang K, Mi J, Lu L, Zhao L, Wang L et al 2015 Adv. Energy Mater. 5 1501294

    Google Scholar 

  4. Seshadri R, Persson K, Kamat P V and Wu Y 2015 Chem. Mater. 27 4505

    CAS  Google Scholar 

  5. Song S, Duong H M, Korsunsky A M, Hu N and Lu L 2016 Sci. Rep. 6 32330

    CAS  Google Scholar 

  6. Xu B and Wang X 2011 Small 7 3439

    CAS  Google Scholar 

  7. Tveryanovich Y S, Bandura A V, Fokina S V, Borisov E N and Evarestov R A 2016 Solid State Ionics 294 82

    CAS  Google Scholar 

  8. Kim J G, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O et al 2015 J. Power Sources 282 299

    CAS  Google Scholar 

  9. Ren J, Yan Q, Wagner T, Zima V, Frumar M, Frumarova B et al 2013 J. Appl. Phys. 114 023701

    Google Scholar 

  10. Gonçalves A P, Lopes E B, Rouleau O and Godart C 2010 J. Mater. Chem. 20 1516

    Google Scholar 

  11. Micoulaut M, Malki M, Novita D I and Boolchand P 2009 Phys. Rev. B 80 184205

    Google Scholar 

  12. Jaiswal P and Dwivedi D K 2018 Mater. Res. Express. 6 015202

    Google Scholar 

  13. Qiu J, Yang A, Zhang M, Li L, Zhang B, Tang D et al 2017 J. Am. Ceram. Soc. 100 5107

    CAS  Google Scholar 

  14. Boolchand P and Bresser W J 2001 Nature 410 1070

    CAS  Google Scholar 

  15. Kolobov A V and Elliott S R 1991 Adv. Phys. 40 625

    CAS  Google Scholar 

  16. Ohto M, Itoh M and Tanaka K 1995 J. Appl. Phys. 77 1034

    Google Scholar 

  17. Stehlik S, Orava J, Kohoutek T, Wagner T, Frumar M, Zima V et al 2010 J. Solid State Chem. 183 144

    CAS  Google Scholar 

  18. Singh P K and Dwivedi D K 2019 Results Phys. 12 223

    Google Scholar 

  19. Mitkova M, Wang Y and Boolchand P 1999 Phys. Rev. Lett. 83 3848

    CAS  Google Scholar 

  20. Yao W and Martin S W 2008 Solid State Ionics 178 1777

    CAS  Google Scholar 

  21. Okano S, Suzuki M, Imura K, Fukada N and Hiraki A 1983 J. Non-Cryst. Solids 59–60 969

    Google Scholar 

  22. Alvi M A and Khan Z H 2013 Nanoscale Res. Lett. 8 148

    CAS  Google Scholar 

  23. Jonscher A K 1977 Nature 267 673

    CAS  Google Scholar 

  24. Hegab N A, Fadel M, Yahia I S, Salem A M and Farid A S 2013 J. Electron. Mater. 42 3397

    CAS  Google Scholar 

  25. Lakhdar M H, Ouni B and Amlouk M 2014 Mater. Sci. Semicond. Process. 19 32

    Google Scholar 

  26. Lukić-Petrović S R, Skuban F, Petrović D M and Slankamenac M 2010 J. Non-Cryst. Solids 356 2409

  27. Atyia H E 2014 J. Non-Cryst. Solids 391 83

    CAS  Google Scholar 

  28. Sharma A, Kumar A and Mehta N 2015 Measurement 75 69

    Google Scholar 

  29. Shimakava K 1982 Philos. Mag. B 46 123

    Google Scholar 

  30. Ajayan P M and Tour J M 2007 Nature 447 1066

    CAS  Google Scholar 

  31. Arrhenius S A 1889 Z. Physik. Chem. 4 226

    Google Scholar 

  32. Mott N F 1969 Philos. Mag. 19 835

    CAS  Google Scholar 

  33. Suresh S, Prasad M and Mouli V C 2010 J. Non-Cryst. Solids 356 1599

    CAS  Google Scholar 

  34. Jlassi I, Sdiri N, Elhouichet H and Ferid M 2015 J. Alloys Compd. 645 125

    CAS  Google Scholar 

  35. Trabelsi I, Jebali A and Kanzari M 2016 J. Mater. Sci.: Mater. Electron. 27 4326

    CAS  Google Scholar 

  36. Mirsaneh M, Furman E, Ryan J V, Lanagan M T and Pantano C G 2010 Appl. Phys. Lett. 96 112907

    Google Scholar 

  37. Sekulic D L, Lazarevic Z Z, Jovalekic C D, Milutinovic A N and Romcevic N Z 2016 Sci. Sinter. 48 17

    CAS  Google Scholar 

  38. Martinez R, Kumar A, Palai R, Scott J F and Katiyar R S 2011 J. Phys. D: Appl. Phys. 44 105302

    Google Scholar 

  39. Bondarenko A S and Ragoisha G 2008 EIS spectrum analyser, http://www.abc.chemistry.bsu

  40. Cui S, Coq D, Boussard-Pledel C and Bureau B 2015 J. Alloys Compd. 639 173

    CAS  Google Scholar 

  41. Sˇiljegović M V, Sekulić D L, Petrović S R L and Petrović D M 2016 J. Mater. Sci: Mater. Electron. 27 1655

  42. Younas M, Nadeem M, Atif M and Grossinger R 2011 J. Appl. Phys. 109 093704

    Google Scholar 

  43. Jaiswal P and Dwivedi D K 2019 Mater. Res. Express. 6 055203

    CAS  Google Scholar 

  44. Sekulić D L, Lazarević Z Z, Satarić M V, Jovalekić C D and Romcˇević N Z 2015 J. Mater. Sci: Mater. Electron. 26 1291

  45. Muduli R, Pattanayak R, Kumar S, Kar S K, Kumar P, Panigrahi S et al 2016 J. Alloys Compd. 656 33

    CAS  Google Scholar 

  46. Gopalan E V, Malini K A, Saravanan S, Kumar D S, Yoshida Y and Anantharaman M R 2008 J. Phys. D: Appl. Phys. 41 185005

    Google Scholar 

  47. Bale S and Rahman S 2012 Mater. Res. Bull. 47 1153

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to ACMS, IIT Kanpur, for providing XRD, SEM, EDX and impedance spectroscopy facility to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D K Dwivedi.

Additional information

Electronic supplementary material: The online version of this article (https://doi.org/10.1007/s12034-020-02210-7) contains supplementary material, which is available to authorized users.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, P., Singh, P.K., Lohia, P. et al. Study of ac conductivity mechanism and impedance spectroscopy in CNT-added Cu5Se75Te10In10 chalcogenide system. Bull Mater Sci 43, 216 (2020). https://doi.org/10.1007/s12034-020-02210-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02210-7

Keywords

Navigation