Skip to main content
Log in

Dependence of cluster growth on the coefficient of restitution in a cooling granular fluid

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Starting from configurations having homogeneous spatial density, we study kinetics in a two-dimensional system of inelastically colliding hard particles, a popular model for cooling granular matter. Following an initial time period, the system exhibits a crossover to an inhomogeneous regime that is characterized by the formation and growth of particle-rich clusters. We present results on the time dependence of average mass of the clusters and that of average kinetic energy, obtained via event-driven molecular dynamics simulations, for a wide range of values for the coefficient of restitution (e), by fixing the overall density of particles in the system to a constant number. The time of onset of crossover from homogeneous to the inhomogeneous regime, as is well known, strongly increases as one moves towards the elastic limit. Nevertheless, our presented results suggest that the asymptotic growth is independent of e, for uniform definition of cluster, onset of which has a different e-dependence than the onset of above-mentioned crossover. In other words, not only the exponent but also the amplitude of the power-law growth, which is widely believed to be the form of the evolution, is at the most very weakly sensitive to the choice of e. While it is tempting to attribute this fact to the similar feature in the decay of energy, we caution that our current understanding is not matured enough to draw such a connection between cluster growth and energy decay in a meaningful manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aranson I S and Tsimring L S 2006 Rev. Mod. Phys. 78 641

    Article  CAS  Google Scholar 

  2. Brilliantov N V and Poeschel T 2004 Kinetic theory of granular gases (Oxford: Oxford University Press)

    Book  Google Scholar 

  3. Brilliantov N, Krapivsky P L, Bodrova A, Spahn F, Hayakawa H, Stadnichuk V et al 2015 Proc. Natl. Acad. Sci. U.S.A. 112 9536

    Article  CAS  Google Scholar 

  4. Mattson L 2016 Planet. Space Sci. 133 107

    Article  Google Scholar 

  5. Goldhirsch I and Zanetti G 1993 Phys. Rev. Lett. 70 1619

    Article  CAS  Google Scholar 

  6. Nie X, Ben-Naim E and Chen S 2002 Phys. Rev. Lett. 89 204301

    Article  Google Scholar 

  7. Ben-Naim E, Chen S Y, Doolan G D and Redner S 1999 Phys. Rev. Lett. 83 4069

    Article  CAS  Google Scholar 

  8. Luding S and Herrmann H J 1999 Chaos 9 673

    Article  Google Scholar 

  9. Brito R and Ernst M H 1998 Europhys. Lett. 43 497

    Article  CAS  Google Scholar 

  10. Haff P K 1983 J. Fluid Mech. 134 401

    Article  Google Scholar 

  11. Bodrova A, Dubey A K, Puri S and Brilliantov N V 2012 Phys. Rev. Lett. 109 178001

    Article  Google Scholar 

  12. Das S K and Puri S 2003 Europhys. Lett. 61 749

    Article  CAS  Google Scholar 

  13. Das S K and Puri S 2003 Phys. Rev. E 68 011302

    Article  Google Scholar 

  14. Shinde M, Das D and Rajesh R 2003 Phys. Rev. E 79 021303

    Article  Google Scholar 

  15. Paul S and Das S K 2014 Europhys. Lett. 108 66001

    Article  Google Scholar 

  16. Paul S and Das S K 2018 Phys. Rev. E 97 032902

    Article  CAS  Google Scholar 

  17. McNamara S and Young W R 1996 Phys. Rev. E 50 R28

    Article  Google Scholar 

  18. Campbell C S 1990 Ann. Rev. Fluid Mech. 22 57

    Article  Google Scholar 

  19. Luding S and McNamara S 1998 Granular Matter 1 113

    Article  Google Scholar 

  20. Herbst O, Cafiero R, Zippelius A, Herrmann H J and Luding S 2005 Phys. Fluids 17 107102

    Article  Google Scholar 

  21. Takada S, Saitoh K and Hayakawa H 2016 Phys. Rev. E 94 012906

    Article  Google Scholar 

  22. Chen S, Deng Y, Nie X and Tu Y 2000 Phys. Lett. A 269 218

    Article  CAS  Google Scholar 

  23. Miller S and Luding S 2004 Phys. Rev. E 69 031305

    Article  CAS  Google Scholar 

  24. Bray A J 2002 Adv. Phys. 51 481

    Article  Google Scholar 

  25. Binder K 1991 in Phase transformation of materials R W Cahn, P Haasen and E J Kramer (eds) (Weinheim: Wiley VCH), Vol 5, p 405

  26. Roy S and Das S K 2013 Soft Matter 9 4178

    Article  CAS  Google Scholar 

  27. Majumder S and Das S K 2011 Europhys. Lett. 95 46002

    Article  Google Scholar 

  28. Shinde M, Das D and Rajesh R 2007 Phys. Rev. Lett. 99 234505

    Article  Google Scholar 

  29. Carnevale G F, Pomeau Y and Young W R 1990 Phys. Rev. Lett. 64 2913

    Article  CAS  Google Scholar 

  30. Paul S and Das S K 2017 Phys. Rev. E 96 012105

    Article  Google Scholar 

  31. Trizac E and Hansen J-P 1995 Phys. Rev. Lett. 74 4114

    Article  CAS  Google Scholar 

  32. Trizac E and Hansen J-P 1996 J. Stat. Phys. 82 1345

    Article  Google Scholar 

  33. Allen M P and Tildesley D J 1987 Computer simulation of liquids (Oxford: Clarendon)

    Google Scholar 

  34. Rapaport D C 2004 The art of molecular dynamics simulation (Cambridge, UK: Cambridge University Press)

  35. Fisher M E 1967 Rep. Prog. Phys. 30 615

    Article  CAS  Google Scholar 

  36. Goldenfeld N 1992 Lectures on phase transitions and renormalization group (London: Addison-Wesley)

    Google Scholar 

  37. Hummel M, Clewett J P D and Mazza M C 2016 Europhys. Lett. 114 10002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SUBIR K DAS.

Additional information

This article is part of the Topical Collection: SAMat Focus Issue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DAS, S.K., PAUL, S. Dependence of cluster growth on the coefficient of restitution in a cooling granular fluid. Bull Mater Sci 43, 308 (2020). https://doi.org/10.1007/s12034-020-02199-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02199-z

Keywords

Navigation