Skip to main content
Log in

Stealth cross-linked polymeric nanoparticles for passive drug targeting: a combination of molecular docking and comprehensive in vitro assay

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Till date, several studies have reported magnetic drug targeting as well as passive drug delivery. In this study, the passive characteristic of PEGylated carriers with a neutral surface charge rather than chitosan (CS)-based nanoparticles (NPs) with a positive charge was proved using molecular docking. The complete and without flaw stealth CS-coated magnetic NPs (mNPs) loaded with an anticancer drug for intravenous drug delivery were prepared using a modified ionic-crosslinking method. The physicochemical properties of the prepared magnetic-CS NPs were characterized in detail. The transmission electron micrographs of NPs showed an uniform particle morphology with an average diameter of smaller than 10 nm. The average IC50 values of the drug in PEGylated NPs for MCF-7 and PC-12 cells were 44 and 72 µM, respectively. The fabricated stealth NPs can increase the cytotoxicity and cell permeability of formulation that may release the entire drug in targeted shape to objective tissues that were firstly proved by molecular docking. This strategy showed a reduction in uptaking of mNPs by the reticuloendothelial system, which indeed increases the concentration of therapeutic agent(s) in the target site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chen T-J, Cheng T-H, Chen C-Y, Hsu S C, Cheng T-L, Liu G-C et al 2009 JBIC, J. Biol. Inorg. Chem. 14 253

    CAS  Google Scholar 

  2. Azandaryani A H, Kashanian S and Jamshidnejad-Tosaramandani T 2019 Curr. Pharm. Biotechnol. 20 526

    CAS  Google Scholar 

  3. Chandra S, Noronha G, Dietrich S, Lang H and Bahadur D 2014 J. Magn. Magn. Mater. 380 7

    Google Scholar 

  4. Yang H Y, Li Y and Lee D S 2018 Adv. Ther. 1 1800011

    Google Scholar 

  5. Chen J-P, Yang P-C, Ma Y-H and Wu T 2011 Carbohydr. Polym. 84 364

    CAS  Google Scholar 

  6. Abakumov M A, Nukolova N V, Sokolsky-Papkov M, Shein S A, Sandalova T O, Vishwasrao H M et al 2015 Nanomed.: Nanotechnol., Biol. Med. 11 825

    CAS  Google Scholar 

  7. Berry C C 2009 J. Phys. D: Appl. Phys. 42 224003

    Google Scholar 

  8. Wang W, Jing Y, He S, Wang J-P and Zhai J-P 2014 Colloids Surf. B 117 449

    Google Scholar 

  9. Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R and Hubalek J 2010 Pharmacol. Res. 62 144

    CAS  Google Scholar 

  10. Park J H, Saravanakumar G, Kim K and Kwon I C 2010 Adv. Drug Deliv. Rev. 62 28

    CAS  Google Scholar 

  11. Azandaryani A H, Kashanian S, Shahlaei M, Derakhshandeh K, Motiei M and Moradi S 2019 Pharm. Res. 36 62

    Google Scholar 

  12. Corbet C, Ragelle H, Pourcelle V, Vanvarenberg K, Marchand-Brynaert J, Préat V et al 2016 J. Control. Release 223 53

    CAS  Google Scholar 

  13. Baharifar H, Khoobi M, Bidgoli S A and Amani A 2020 Int. J. Biol. Macromol. 143 181

    CAS  Google Scholar 

  14. Wathoni N, Rusdin A, Febriani E, Purnama D, Daulay W, Azhary S Y et al 2019 J. Pharm. Bioallied Sci. 11 619

    Google Scholar 

  15. Blanco E, Shen H and Ferrari M 2015 Nat. Biotechnol. 33 941

    CAS  Google Scholar 

  16. Patitsa M, Karathanou K, Kanaki Z, Tzioga L, Pippa N, Demetzos C et al 2017 Sci. Rep. 7 775

    Google Scholar 

  17. Zhang T, Zhou S, Hu L, Peng B, Liu Y, Luo X et al 2018 Drug Deliv. Transl. Res. 8 602

    CAS  Google Scholar 

  18. Oh N and Park J-H 2014 Int. J. Nanomed. 9 51

    Google Scholar 

  19. Vieira A C, Chaves L L, Pinheiro M, Lima S A C, Ferreira D, Sarmento B et al 2018 Artif. Cells Nanomed. Biotechnol. 46 653

    CAS  Google Scholar 

  20. Feinberg H, Park-Snyder S, Kolatkar A R, Heise C T, Taylor M E and Weis W I 2000 J. Biol. Chem. 275 21539

    CAS  Google Scholar 

  21. Fraser I P, Koziel H and Ezekowitz R A B (eds) 1998 Semin. Immunol. 10 363

    CAS  Google Scholar 

  22. Lodhia J, Mandarano G, Ferris N, Eu P and Cowell S 2010 Biomed. Imaging Interv. J. 6 e12

    CAS  Google Scholar 

  23. Graczyk H, Bryan L C, Lewinski N, Suarez G, Coullerez G, Bowen P et al 2015 J. Aerosol Med. Pulm. Drug Deliv. 28 43

    CAS  Google Scholar 

  24. Nikandish N, Hosseinzadeh L, Derakhshandeh K and Hemmati Azandaryani A 2016 Iran. J. Pharm. Res. 15 403

    CAS  Google Scholar 

  25. Azandaryani A H, Kashanian S and Derakhshandeh K 2017 Pharm. Res. 34 2798

    Google Scholar 

  26. Shameli K, Bin Ahmad M, Jazayeri S D, Sedaghat S, Shabanzadeh P, Jahangirian H et al 2012 Int. J. Mol. Sci. 13 6639

    CAS  Google Scholar 

  27. Dey S K, Mandal B, Bhowmik M and Ghosh L K 2009 Braz. J. Pharm. Sci. 45 585

    CAS  Google Scholar 

  28. Khanmohammadi M, Ashori A, Kargosha K and Garmarudi A B 2007 J. Surfactants Deterg. 10 81

    CAS  Google Scholar 

  29. Mikhaylova M, Kim D K, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T et al 2004 Langmuir 20 2472

    CAS  Google Scholar 

  30. Hong P Z, Li S D, Ou C Y, Li C P, Yang L and Zhang C H 2007 J. Appl. Polym. Sci. 105 547

    CAS  Google Scholar 

  31. Li G-Y, Jiang Y-R, Huang K-L, Ding P and Chen J 2008 J. Alloys Compd. 466 451

    CAS  Google Scholar 

  32. Safari J and Zarnegar Z 2013 J. Chem. Sci. 125 835

    CAS  Google Scholar 

  33. Ofner C M, Pica K, Bowman B J and Chen C-S 2006 Int. J. Pharm. 308 90

    CAS  Google Scholar 

  34. Wang H-X, Zuo Z-Q, Du J-Z, Wang Y-C, Sun R, Cao Z-T et al 2016 Nano Today 11 133

    CAS  Google Scholar 

  35. Salatin S and Yari Khosroushahi A 2017 J. Cell. Mol. Med. 21 1668

    CAS  Google Scholar 

  36. Gordon S 2002 Cell 111 927

    CAS  Google Scholar 

  37. Han Y, Zhao L, Yu Z, Feng J and Yu Q 2005 Int. Immunopharmacol. 5 1533

    CAS  Google Scholar 

  38. Li S-D and Huang L 2009 Biochim. Biophys. Acta (BBA), Biomembr. 1788 2259

    CAS  Google Scholar 

  39. Xue Y, Balmuri S R, Patel A, Sant V and Sant S 2018 Drug Deliv. Transl. Res. 8 357

    CAS  Google Scholar 

  40. Meyer O, Kirpotin D, Hong K, Sternberg B, Park J W, Woodle M C et al 1998 J. Biol. Chem. 273 15621

    CAS  Google Scholar 

  41. Farjadian F, Ghasemi S and Mohammadi-Samani S 2016 Int. J. Pharm. 504 110

    CAS  Google Scholar 

  42. Luong D, Kesharwani P, Deshmukh R, Amin M C I M, Gupta U, Greish K et al 2016 Acta Biomater. 43 14

    CAS  Google Scholar 

  43. Arranja A, Gouveia L F, Gener P, Rafael D F, Pereira C, Schwartz S et al 2016 Int. J. Pharm. 501 180

    CAS  Google Scholar 

  44. Mehrabi M, Esmaeilpour P, Akbarzadeh A, Saffari Z, Farahnak M, Farhangi A et al 2016 Turk. J. Med. Sci. 46 567

    CAS  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the deputy of Iran National Science Foundation (INSF) of the presidency of the Islamic Republic of Iran, vice presidency for science and technology under the Project 91003523.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SOHEILA KASHANIAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

HEMATI AZANDARYANI, A., KASHANIAN, S., BAHRAMI, Y. et al. Stealth cross-linked polymeric nanoparticles for passive drug targeting: a combination of molecular docking and comprehensive in vitro assay. Bull Mater Sci 43, 232 (2020). https://doi.org/10.1007/s12034-020-02166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02166-8

Keywords

Navigation