Skip to main content
Log in

Sulphonated polysilsesquioxane–polyimide composite membranes: proton exchange membrane properties

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study reports the preparation of a –COOH-containing sulphonated copolymer (SPI-COOH-70) and its composite membranes. The composite membranes (SPI/SS-X) were prepared by using the solution casting route by adding different weight percentages of 3-(trihydroxysilyl) propane-1-sulphonic acid into SPI-COOH-70 solution. The proton exchange membrane properties such as morphology, ion-exchange capacity, water uptake and proton conductivity of the prepared composite membranes were studied as a function of sulphopropylated polysilsesquioxane (SiOPS) filler and temperature. All the SPI/SS-X composite membranes showed high-thermal stability and chemical stability, which are attributed to the presence of polar phosphine oxide and the wholly aromatic nature of the copolymers. The homogeneous distribution of the SiOPS nanoparticles in the polymer matrix observed from the scanning electron microscopy and atomic force microscopy images are attributed to the formation of covalent bonds between the –OH and –COOH groups of SiOPS and SPI-COOH-70, respectively. The composite membranes with 10 wt% SiOPS exhibited much higher proton conductivity (205 mS cm−1), which is much higher than that of the pristine copolymer membrane (114 mS cm−1) under similar experimental conditions. The improvement in proton conductivity is attributed to the presence of pendant sulphonic acid groups in the nanofiller, which provides a better proton transport pathway in the composite membranes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Carrette L, Friedrich K A and Stimming U 2001 Fuel Cells 1 5

    CAS  Google Scholar 

  2. Miyahara T, Hayano T, Matsuno S, Watanabe M and Miyatake K 2012 ACS Appl. Mater. Interfaces 4 2881

    CAS  Google Scholar 

  3. Mauritz K A and Moore R B 2004 Chem. Rev. 104 4535

    CAS  Google Scholar 

  4. Harrison W L, Wang F, Mecham J B, Bhanu V A, Hill M, Kim Y S et al 2012 J. Polym. Sci. Part A: Polym. Chem. 41 2264

  5. Kim D S, Robertson G P, Kim Y S and Guiver M D 2009 Macromolecules 42 957

    CAS  Google Scholar 

  6. Wang F, Hickner M, Ji Q, Harrison W, Mecham J, Zawodzinski T A et al 2001 Macromol. Symp. 175 387

    CAS  Google Scholar 

  7. Wang F, Hickner M, Kim Y S, Zawodzinski T A and McGrath J E 2002 J. Membr. Sci. 197 231

    CAS  Google Scholar 

  8. Kim Y S, Einsla B R, Sankir M, Harrison W and Pivovar B S 2006 Polymer 47 4026

    CAS  Google Scholar 

  9. Zhang N, Li J, Wang X, Xia Z and Liu H 2009 J. Appl. Polym. Sci. 114 304

    CAS  Google Scholar 

  10. Li N, Shin D W, Hwang D S, Lee Y M and Guiver M D 2010 Macromolecules 43 9810

    CAS  Google Scholar 

  11. Mohanty A K, Mistri E A, Ghosh A and Banerjee S 2012 J. Membr. Sci. 145 409

    Google Scholar 

  12. Mukherjee R, Banerjee S, Komber H and Voit B 2014 RSC Adv. 4 46723

    CAS  Google Scholar 

  13. Gao Y, Robertson G P, Guiver M D, Mikhailenko S D, Li X and Kaliaguine S 2005 Macromolecules 38 3237

    CAS  Google Scholar 

  14. Bai Z and Dang T D 2006 Macromol. Rapid Commun. 27 1271

    CAS  Google Scholar 

  15. Shin D W, Lee S Y, Kang N R, Lee K H, Guiver M D and Lee Y M 2013 Macromolecules 46 3452

    CAS  Google Scholar 

  16. Xing P, Robertson G P, Guiver M D, Mikhailenko S D and Kaliaguine S 2004 Macromolecules 37 7960

    CAS  Google Scholar 

  17. Shang X, Tian S, Kong L and Meng Y 2005 J. Membr. Sci. 266 94

    CAS  Google Scholar 

  18. Xing P, Robertson G P, Guiver M D, Mikhailenko S D and Kaliaguine S 2005 Polymer 46 3257

    CAS  Google Scholar 

  19. Liu B, Kim D S, Murphy J, Robertson G P, Guiver M D, Mikhailenko S et al 2006 J. Membr. Sci. 280 54

    CAS  Google Scholar 

  20. Zhang G, Fu T, Shao K, Li X, Zhao C, Na H et al 2009 J. Power Sources 189 875

    CAS  Google Scholar 

  21. Mistri E A, Mohanty A K, Banerjee S, Komber H and Voit B 2013 J. Membr. Sci. 441 168

    CAS  Google Scholar 

  22. Mandal A K, Bisoi S, Banerjee S, Komber H and Voit B 2017 Eur. Polym. J. 95 581

    CAS  Google Scholar 

  23. Singh A, Mukherjee R, Banerjee S, Komber H and Voit B 2014 J. Membr. Sci. 469 225

    CAS  Google Scholar 

  24. Saha S, Mukherjee R, Singh A and Banerjee S 2016 Polym. Eng. Sci. 57 312

    Google Scholar 

  25. Miyake N, Wainright J S and Savinell R F 2001 J. Electrochem. Soc. 148 A898

    CAS  Google Scholar 

  26. Mistri E A and Banerjee S 2014 RSC Adv. 4 22398

    CAS  Google Scholar 

  27. Adjemian K T, Srinivasan S, Benziger J and Bocarsly A B 2002 J. Power Sources 109 356

    CAS  Google Scholar 

  28. Sacca A, Carbone A, Passalacqua E, D’epifanio A, Licoccia S, Traversa E et al 2005 J. Power Sources 152 16

    CAS  Google Scholar 

  29. Casciola M, Bagnasco G, Donnadio A, Micoli L, Pica M, Sganappa M et al 2009 Fuel Cells 9 394

    CAS  Google Scholar 

  30. Kim Y S, Wang F, Hickner M A, Zawodzinski T A and McGrath J E 2003 J. Membr. Sci. 212 263

    CAS  Google Scholar 

  31. Wang Z, Ni H, Zhao C, Li X, Fu T and Na H 2006 J. Polym. Sci. Part B: Polym. Phys. 44 1967

    CAS  Google Scholar 

  32. Smitha B, Sridhar S and Khan A A 2005 J. Polym. Sci. Part B: Polym. Phys. 43 1538

    CAS  Google Scholar 

  33. Rhee C H, Kim H K, Chang H and Lee J S 2005 Chem. Mater. 17 1691

    CAS  Google Scholar 

  34. Su Y H, Liu Y L, Sun Y M, Lai J Y, Wang D M, Gao Y et al 2007 J. Membr. Sci. 296 21

    CAS  Google Scholar 

  35. Xu K, Chanthad C, Gadinski M R, Hickner M A and Wang Q 2009 ACS Appl. Mater. Interfaces 1 2573

    CAS  Google Scholar 

  36. Miyatake K, Tombe T, Chikashige Y, Uchida H and Watanabe M 2007 Angew. Chem. Int. Ed. 46 6646

    CAS  Google Scholar 

  37. Mandal A K, Bisoi S and Banerjee S 2019 ACS Appl. Polym. Mater. 1 893

    CAS  Google Scholar 

  38. Lin C H, Chang S L, Peng L A, Peng S P and Chuang Y H 2010 Polymer 51 3899

    CAS  Google Scholar 

  39. Mauritz K A and Warren R M 1989 Macromolecules 22 1730

    CAS  Google Scholar 

  40. Lufrano F, Squadrito G and Patti A 2000 J. Appl. Polym. Sci. 77 1250

    CAS  Google Scholar 

  41. Danilczuk M, Coms F D and Schlick S 2009 J. Phys. Chem. B 113 8031

    CAS  Google Scholar 

  42. So S Y, Yoon Y J, Kim T H, Yoon K and Hong Y T 2011 J. Membr. Sci. 381 204

    CAS  Google Scholar 

Download references

Acknowledgement

AKM acknowledges CSIR, New Delhi, for the research assistantship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SUSANTA BANERJEE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MANDAL, A.K., GHORAI, A. & BANERJEE, S. Sulphonated polysilsesquioxane–polyimide composite membranes: proton exchange membrane properties. Bull Mater Sci 43, 192 (2020). https://doi.org/10.1007/s12034-020-02158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02158-8

Keywords

Navigation