Skip to main content
Log in

Efficient electrocatalytic activity for oxygen reduction reaction by phosphorus-doped graphene using supercritical fluid processing

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Oxygen reduction reaction (ORR) plays a vital role in various fields, such as combustion, corrosion and fuel cell applications. Herein, we report the production of phosphorus-doped reduced graphene oxide (P-RGO) using triphenyl phosphine as a phosphorus source and graphene oxide in supercritical fluid method. The ratio of phosphorus source and graphene oxide has been varied to obtain optimum P-doping. P-RGO materials are characterized through X-ray diffractometer, Raman, field emission scanning electron microscopy and X-ray photoelectron spectroscopy techniques. The electrocatalytic activity of P-RGO materials are studied using linear sweep voltammetry and their ORR performance are evaluated using linear sweep voltammetry-rotating ring disk electrode studies in 0.1 M KOH electrolyte. Among the three different P-RGO materials, RGO with phosphorus doping (2:1) delivered the best ORR performance (0.75 A mg−1) compared to commercial HiSPEC Pt/C (0.12 A mg−1) catalyst. The enhanced ORR activity could be ascribed to the existence of surface-active phosphorous sites over the RGO sheet surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wang L and Liu L 2019 Bull. Mater. Sci. 42 85

    Article  Google Scholar 

  2. Joghee P, Malik J N, Pylypenko S and O’Hayre R 2015 MRS Energy Sustain. 2 E3

    Article  Google Scholar 

  3. Shao M, Chang Q, Dodelet J-P and Chenitz R 2016 Chem. Rev. 116 3594

    Article  CAS  Google Scholar 

  4. Venarusso L B, Bettini J and Maia G 2016 ChemElectroChem 3 749

    Article  CAS  Google Scholar 

  5. Aricò A S, Srinivasan S and Antonucci V 2001 Fuel Cells 1 133

    Article  Google Scholar 

  6. Selvarani G, Selvaganesh S V, Sridhar P, Pitchumani S and Shukla A K 2011 Bull. Mater. Sci. 34 337

    Article  CAS  Google Scholar 

  7. Vukmirovic M B, Zhang J, Sasaki K, Nilekar A U, Uribe F, Mavrikakis M et al 2007 Electrochim. Acta 52 2257

    Article  CAS  Google Scholar 

  8. Wang J X, Inada H, Wu L, Zhu Y, Choi Y, Liu P et al 2009 J. Am. Chem. Soc. 131 17298

    Article  CAS  Google Scholar 

  9. Stephens I E L, Bondarenko A S, Grønbjerg U, Rossmeisl J and Chorkendorff I 2012 Energy Environ. Sci. 5 6744

    Article  CAS  Google Scholar 

  10. Sebastián D, Serov A, Artyushkova K, Gordon J, Atanassov P, Aricò A S et al 2016 ChemSusChem 9 1986

    Article  Google Scholar 

  11. Li R, Wei Z and Gou X 2015 ACS Catal. 5 4133

    Article  CAS  Google Scholar 

  12. Razmjooei F, Singh K P, Bae E J and Yu J-S 2015 J. Mater. Chem. A 3 11031

    Article  CAS  Google Scholar 

  13. Han J-S, Chung D Y, Ha D-G, Kim J-H, Choi K, Sung Y-E et al 2016 Carbon N. Y. 105 1

    Article  CAS  Google Scholar 

  14. Xiao C, Chen X and Tang Y 2017 Nanotechnology 28 225401

    Article  Google Scholar 

  15. Qu L, Liu Y, Baek J and Dai L 2010 ACS Nano 4 1321

    Article  CAS  Google Scholar 

  16. Yang S, Zhu C, Sun J, He P, Yuan N, Ding J et al 2015 RSC Adv. 5 33347

    Article  CAS  Google Scholar 

  17. Li R, Wei Z, Gou X and Xu W 2013 RSC Adv. 3 9978

    Article  CAS  Google Scholar 

  18. Zhang C, Mahmood N, Yin H, Liu F and Hou Y 2013 Adv. Mater. 25 4932

    Article  CAS  Google Scholar 

  19. Liu Z-W, Peng F, Wang H-J, Yu H, Zheng W-X and Yang J 2011 Angew. Chemie Int. Ed. 50 3257

    Article  Google Scholar 

  20. Thangasamy P and Sathish M 2015 CrystEngComm 17 5895

    Article  CAS  Google Scholar 

  21. Rangappa D, Sone K, Zhou Y, Kudo T and Honma I 2011 J. Mater. Chem. 21 15813

    Article  CAS  Google Scholar 

  22. Sathish M, Mitani S, Tomai T and Honma I 2014 J. Mater. Chem. A 2 4731

    Article  CAS  Google Scholar 

  23. Zhou Y, Yen C H, Fu S, Yang G, Zhu C, Du D et al 2015 Green Chem. 17 3552

    Article  CAS  Google Scholar 

  24. Balaji S S, Karnan M, Kamarsamam J and Sathish M 2019 ChemElectroChem 6 1492

    Article  CAS  Google Scholar 

  25. Balaji S S, Karnan M, Anandhaganesh P, Tauquir S M and Sathish M 2019 Appl. Surf. Sci. 491 560

    Article  CAS  Google Scholar 

  26. Balaji S S, Elavarasan A and Sathish M 2016 Electrochim. Acta 200 37

    Article  CAS  Google Scholar 

  27. Jr W H and Offeman R 1958 J. Am. Chem. 208 1937

  28. Suresh Balaji S, Karnan M and Sathish M 2018 Int. J. Hydrogen Energy 43 4044

    Article  CAS  Google Scholar 

  29. Anandha Ganesh P and Jeyakumar D 2014 Nanoscale 6 13012

    Article  CAS  Google Scholar 

  30. Anandha Ganesh P and Jeyakumar D 2017 ChemistrySelect 2 3562

    Article  Google Scholar 

  31. Carrillo-Rodríguez J C, Alonso-Lemus I L, Siller-Ceniceros A A, Martínez E G, Pizá-Ruiz P, Vargas-Gutiérrez G et al 2017 Int. J. Hydrogen Energy 42 30383

    Article  Google Scholar 

  32. Balaji S S and Sathish M 2014 RSC Adv. 4 52256

    Article  CAS  Google Scholar 

  33. Shinde D B, Vishal V M, Kurungot S and Pillai V K 2015 Bull. Mater. Sci. 38 435

    Article  CAS  Google Scholar 

  34. Wang C, Zhou Y, Sun L, Zhao Q, Zhang X, Wan P et al 2013 J. Phys. Chem. C 117 14912

    Article  CAS  Google Scholar 

  35. Wang H, Maiyalagan T and Wang X 2012 ACS Catal. 2 781

    Article  CAS  Google Scholar 

  36. Qiao X, Liao S, You C and Chen R 2015 Catalysts 5 981

    Article  CAS  Google Scholar 

  37. Liao S-H, Liu P-L, Hsiao M-C, Teng C-C, Wang C-A, Ger M-D et al 2012 Ind. Eng. Chem. Res. 51 4573

    Article  CAS  Google Scholar 

  38. Anandha Ganesh P and Jeyakumar D 2017 ChemistrySelect 2 7544

    Article  CAS  Google Scholar 

  39. Anandha Ganesh P and Jeyakumar D 2018 Electrochim. Acta 262 306

    Article  CAS  Google Scholar 

  40. Kim B J, Lee D U, Wu J, Higins D, Yu A and Chen Z 2013 J. Phys. Chem. C 117 26501

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Science and Engineering Research Board for financial support (DST-SERB, File No. EMR/2016/006807, GAP 25/17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sathish.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, S.S., Ganesh, P.A., Moorthy, M. et al. Efficient electrocatalytic activity for oxygen reduction reaction by phosphorus-doped graphene using supercritical fluid processing. Bull Mater Sci 43, 151 (2020). https://doi.org/10.1007/s12034-020-02142-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02142-2

Keywords

Navigation