Skip to main content
Log in

Evaporation-driven self-assembly in the mixtures of micro and nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

We report experimental studies on the self-assembly of silica microspheres and Laponite nanoplatelets (NPs) in evaporating sessile droplets and in thin films, respectively. A ring-like stain of the silica microspheres with positional order is observed after the evaporation of sessile droplets due to the coffee-ring effect. This effect is suppressed in the binary mixtures of silica microspheres and Laponite NPs. A depletion zone has been observed in the mixtures during the sessile droplet evaporation, the width of which can be tuned by varying the compositions. We demonstrate a simple method for preparing core–shell particles by evaporating thin films of binary mixtures in which the Laponite NPs self-assemble to form a crystalline shell on the amorphous silica microspheres. We present a possible orientation of the Laponite NPs in the shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nie Z, Petukhova A and Kumacheva E 2010 Nat. Nanotechnol. 5 15

    Article  CAS  Google Scholar 

  2. Glotzer S C and Solomon M J 2007 Nat. Mater. 6 557

    Article  Google Scholar 

  3. Abécassis B, Tessier M D, Davidson P and Dubertret B 2014 Nano Lett. 14 710

    Article  Google Scholar 

  4. Sacanna S, Korpics M, Rodriguez K, Colón-Meléndez L, Kim S H, Pine D J et al 2013. Nat. Commun. 4 1688

    Article  Google Scholar 

  5. Pujala R K 2014 Dispersion stability, microstructure and phase transition of anisotropic nanodiscs (Switzerland: Springer International Publishing). ISBN 978-3-319-04555-9, https://doi.org/10.1007/978-3-319-04555-9

  6. Kuijk A, van Blaaderen A and Imhof A 2011 J. Am. Chem. Soc. 133 2346

    Article  CAS  Google Scholar 

  7. Ruzicka B, Zaccarelli E, Zulian L, Angelini R, Sztucki M, Moussaïd A et al 2011 Nat. Mater. 10 56

    Article  CAS  Google Scholar 

  8. Zhang Z and Glotzer S C 2004 Nano Lett. 4 1407

  9. Mampallil D 2014 Reson.—J. Sci. Educ. 19 123

    Google Scholar 

  10. Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R and Witten T A 2000 Phys. Rev. E 62 756

    Article  CAS  Google Scholar 

  11. Deegan R D, Olgica B, Dupont T F, Greg H, Nagel S R and Thomas A W 1997 Nature 389 827

    Article  CAS  Google Scholar 

  12. Mampallil D and Eral H B 2018 Adv. Colloid Interface Sci. 252 38

    Article  CAS  Google Scholar 

  13. Bigioni T P, Lin X M, Nguyen T T, Corwin E I, Witten T A and Jaeger H M 2006 Nat. Mater. 5 265

    Article  CAS  Google Scholar 

  14. Brinker C J, Lu Y, Sellinger A and Fan A 1999 Adv. Mater. 11 579

    Article  CAS  Google Scholar 

  15. Zhang L, Liu H T, Zhao Y, Sun X N, Wen Y G, Guo Y L et al 2012 Adv. Mater. 24 436

    Article  CAS  Google Scholar 

  16. de Gans B J and Schubert U S 2004 Langmuir 20 7789

    Article  Google Scholar 

  17. Dugas V, Broutin J and Souteyrand E 2005 Langmuir 21 9130

    Article  CAS  Google Scholar 

  18. Shi J, Yang L and Bain C D 2019 ACS Appl. Mater. Interfaces 11 14275

    Article  CAS  Google Scholar 

  19. Talbot E L, Yang L, Berson A and Bain C D 2014 ACS Appl. Mater. Interfaces 6 9572

    Article  CAS  Google Scholar 

  20. Liu W, Midya J, Kappl M, Butt H J and Nikoubashman A 2019 ACS Nano 13 4972

    Article  CAS  Google Scholar 

  21. Pujala R K, Kumar M P and Dhara S 2018 J. Phys. D: Appl. Phys. 51 304003

    Article  Google Scholar 

  22. Pujala R K, Schneijdenberg C T W M, van Blaaderen A and Bohidar H B 2019 Sci. Rep. 8 5589

    Article  Google Scholar 

  23. Marín Á G, Gelderblom H, Lohse D and Snoeijer J H 2011 Phys. Rev. Lett. 107 085502

    Article  Google Scholar 

  24. Still T, Yunker P J and Yodh A G 2012 Langmuir 28 4984

    Article  CAS  Google Scholar 

  25. Varanakkottu S N, Anyfantakis M, Morel M, Rudiuk S and Baigl D 2015 Nano Lett. 16 644

    Article  Google Scholar 

  26. Mayarani M, Basavaraj M G and Satapathy D K 2019 Soft Matter 15 4170

    Article  CAS  Google Scholar 

  27. Olympus Scientific Solutions: https://www.olympus-lifescience.com/en/microscoperesource/primer/techniques/polarized/firstorderplate/

Download references

Acknowledgements

RKP acknowledges the support from the Department of Science and Technology, India for an INSPIRE Faculty Award Grant (DST/INSPIRE/04/2016/002370). SD gratefully acknowledges the support from the DST (DST/SJF/PSA-02/2014-2015) and SERB. DVS acknowledges DST for INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Dhara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pujala, R.K., Venkuzhy Sudhakaran, D. & Dhara, S. Evaporation-driven self-assembly in the mixtures of micro and nanoparticles. Bull Mater Sci 43, 173 (2020). https://doi.org/10.1007/s12034-020-02096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02096-5

Keywords

Navigation