Skip to main content
Log in

Effect of bismuth oxide nanoparticles on the physicochemical properties of porous silicon thin films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, bismuth oxide nanoparticles were successfully deposited on porous silicon (PSi) in order to enhance the light absorption and reduce the optical losses. The obtained bismuth oxide \((\hbox {Bi}_{2}\hbox {O}_{3})/\hbox {PSi}\) samples were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM) combined with energy-dispersive spectroscopy (EDS), atomic force microscopy (AFM), photoluminescence (PL), UV–visible absorption and reflection spectroscopy techniques. The XRD studies revealed the formation of the monoclinic \(\upalpha \hbox {-Bi}_{2}\hbox {O}_{3}\) phase. The XPS analysis demonstrates the formation of highly pure \(\hbox {Bi}_{2}\hbox {O}_{3}\) nanoparticles in accordance with XRD results. The SEM and AFM analyses confirmed that the bismuth oxide nanoparticles are well incorporated and uniformly distributed over the surface of PSi without changes in the arrangement and shape of the pores, resulting in an optimized microstructure. The \(\hbox {Bi}_{2}\hbox {O}_{3}/\hbox {PSi}\) films showed better absorption than PSi layers as indicated by UV–Vis absorption technique. The reflection measurements confirmed a further reduction in reflectivity of PSi from 6.4 to 3.5% after the inclusion of \(\hbox {Bi}_{2}\hbox {O}_{3}\) nanoparticles, which is of significant importance for solar cells application since it can enhance its conversion efficiency. The \(\hbox {Bi}_{2}\hbox {O}_{3}/\hbox {PSi}\) films have a great promise to be used as efficient antireflection coatings in innovative concepts of higher efficiency and cost-effective solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Menna P, Di Francia G and La Ferrara V 1995 Sol. Energy Mater. Sol. Cells 37 13

    Article  CAS  Google Scholar 

  2. Remache L, Fourmond E, Mahdjoub A, Dupuis J and Lemiti M 2011 Mater. Sci. Eng. B 176 45

    Article  CAS  Google Scholar 

  3. Lukianov A and Ihara M 2018 Thin Solid Films 648 1

    Article  CAS  Google Scholar 

  4. Miranda C R, Baldan M R, Beloto A F and Ferreira N G 2008 J. Braz. Chem. Soc. 19 769

    Article  CAS  Google Scholar 

  5. Mohamed S B, Ben Rabha M and Bessais B 2013 Sol. Energy 94 277

    Article  Google Scholar 

  6. Das M and Sarkar D 2016 Bull. Mater. Sci. 39 1671

    Article  CAS  Google Scholar 

  7. Ramizy A, Hassan Z, Omar K, Al-Douri Y and Mahdi M A 2011 Appl. Surf. Sci. 257 6112

    Article  CAS  Google Scholar 

  8. Mahmoud W E and Al-Ghamdi A A 2011 Polym. Adv. Technol. 22 877

    Article  CAS  Google Scholar 

  9. Hu Q, Wang J, Zhao Y and Li D 2011 Opt. Express 19 A20

    Article  CAS  Google Scholar 

  10. Kamel R I, Ahmed D S and Nayef U M 2019 Optik 193 163013

    Article  CAS  Google Scholar 

  11. Sood S, Umar A, Mehta S K and Kansal S K 2015 Ceram. Int. 41 3355

    Article  CAS  Google Scholar 

  12. Takeyama T, Takahashi N, Nakamura T and Ito S 2004 Opt. Mater. 26 413

    Article  CAS  Google Scholar 

  13. Leontie L, Caraman M, Alexe M and Harnagea C 2002 Surf. Sci. 507 480

    Article  Google Scholar 

  14. Raza W, Khan A, Alam U, Muneer M and Bahnemann D 2016 J. Mol. Struct. 1107 39

    Article  CAS  Google Scholar 

  15. Balachandran S and Swaminathan M 2012 J. Phys. Chem. C 116 26306

    Article  CAS  Google Scholar 

  16. Bian Z, Zhu J, Wang S, Cao Y, Qian X and Li H 2008 J. Phys. Chem. C 112 6258

    Article  CAS  Google Scholar 

  17. Moussi A, Bouhafs D, Benreguia N and Mahiou L 2008 Surf. Rev. Lett. 15 261

    Article  CAS  Google Scholar 

  18. Mebarki M, Moussi A, Azizi A, Khelladi M R and Mahiou L 2016 ECS Trans. 72 23

    Article  CAS  Google Scholar 

  19. Pereira A L J, Gomis O, Sans J A, Pellicer-Porres J, Manjon F J, Beltran A et al 2014 J. Phys. Condens. Matter 26 225

    Article  Google Scholar 

  20. Zou H, Song M, Yi F, Bian L, Liu P and Zhang S 2016 J. Alloys Compd. 680 54

    Article  CAS  Google Scholar 

  21. Hou J, Wang Z, Jiao S and Zhu H 2011 J. Hazard. Mater. 192 1772

    Article  CAS  Google Scholar 

  22. Sun Y, Wu J, Ma T, Wang P, Cui C and Ma D 2017 Appl. Surf. Sci. 403 141

    Article  CAS  Google Scholar 

  23. Dharmadhikari V S, Sainkar S R, Badinarayan S and Goswami A 1982 J. Electron Spectrosc. Relat. Phenom. 25 181

    Article  CAS  Google Scholar 

  24. Tsu R, Shen H and Dutta M 1992 Appl. Phys. Lett. 60 112

    Article  CAS  Google Scholar 

  25. Guha S, Steiner P, Kozlowski F and Lang W 1997 J. Porous Mater. 4 227

    Article  CAS  Google Scholar 

  26. Ahila M, Malligavathy M, Subramanian E and Padiyan D P 2016 Solid State Ion. 298 23

    Article  CAS  Google Scholar 

  27. Schmidt S, Kubaski E T, Volanti D P, Sequinel T, Bezzon V D N, Beltrán A et al 2015 Inorg. Chem. 54 10184

    Article  CAS  Google Scholar 

  28. Ramizy A, Hassan Z and Omar K 2011 J. Mater. Sci.: Mater. Electron. 22 717

    Article  CAS  Google Scholar 

  29. Li W 2005 J. Cent. South Univ. Technol. 36 175

    CAS  Google Scholar 

  30. Jin Z, Zhang Y X, Meng F L, Jia Y, Luo T, Yu X Y et al 2014 J. Hazard. Mater. 276 400

    Article  CAS  Google Scholar 

  31. Medina J C, Portillo-Vélez N S, Bizarro M, Hernández-Gordillo A and Rodil S E 2018 Dyes Pigments 153 106

    Article  CAS  Google Scholar 

  32. Liu X, Pan L, Li J, Yu K and Sun Z 2013 J. Nanosci. Nanotechnol. 13 5044

    Article  CAS  Google Scholar 

  33. Hou J, Yang C, Wang Z, Zhou W, Jiao S and Zhu H 2013 Appl. Catal. B: Environ. 142 504

    Article  Google Scholar 

  34. Malathy P, Vignesh K, Rajarajan M and Suganthi A 2014 Ceram. Int. 40 101

    Article  CAS  Google Scholar 

  35. Ramesh M and Nagaraja H S 2017 Mater. Today Chem. 3 10

    Article  Google Scholar 

  36. Hocine D, Belkaid M S, Pasquinelli M, Escoubas L, Simon J J, Rivière G A et al 2013 Mater. Sci. Semicond. Process. 16 113

    Article  CAS  Google Scholar 

  37. Raza W, Haque M M, Muneer M, Harada T and Matsumura M 2015 J. Alloys Compd. 648 641

    Article  CAS  Google Scholar 

  38. Sharma R, Khanuja M, Sharma S N and Sinha O P 2017 Int. J. Hydrog. Energy 42 20638

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the Mouloud Mammeri University of Tizi-Ouzou (UMMTO) and all members of ICB laboratory of University of Burgundy (France) for the financial support and their kind help. The author is also thankful to Maxime Guerineau, Olivier Heintz, Nicolas Pocholle, Cedric Clerc and Reinaldo-Augusto Chacon-Hevia for the SEM/EDX, XPS, Raman, absorption and PL characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Oussidhoum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oussidhoum, S., Hocine, D., Bensidhoum, M.O. et al. Effect of bismuth oxide nanoparticles on the physicochemical properties of porous silicon thin films. Bull Mater Sci 43, 33 (2020). https://doi.org/10.1007/s12034-019-2001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-2001-3

Keywords

Navigation