Skip to main content
Log in

Investigation of a thermoluminescence response and trapping parameters and theoretical model to explain concentration quenching for \(\hbox {Yb}^{3+}\)-doped \(\hbox {ZrO}_{{2}}\) phosphors under UV exposure

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, a thermoluminescence signal centred at \(129{^\circ }\hbox {C}\) induced by UV radiation of \(\hbox {Yb}^{3+}\)-doped \(\hbox {ZrO}_{{2}}\) is reported. Phosphor was prepared by a solution combustion method and annealed at 600 and \(900{^\circ }\hbox {C}\) to study the effect of annealing. The prepared phosphor was characterized by X-ray diffraction and scanning electron microscopy methods. Various parameters were optimized. Computerized glow curve deconvolution was employed and kinetic parameters for every deconvoluted peak were calculated. To understand the concentration quenching, a 3T1R (three trap one recombination centre) model has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shoaib K A, Hashmi F H, Ali M, Bukhari S J H and Majid C A 1997 Phys. Status Solidi A 40 605

    Article  Google Scholar 

  2. Mukherjee B, Lambert J, Hentschel R, Negodin E and Farr J 2011 Radiat. Meas. 46 1698

    Article  CAS  Google Scholar 

  3. Laopaiboon R and Bootjomchai C 2015 J. Lumin. 158 275

    Article  CAS  Google Scholar 

  4. Chowdhury M, Sharma S K and Lochab S P 2016 Ceram. Int. 42 5472

    Article  CAS  Google Scholar 

  5. Malleshappa J, Nagabhushana H, Prasad B D, Sharma SC, Vidya Y S and Anantharaju K S 2016 Optik—Int. J. Light Electron Opt. 127 855

    Article  CAS  Google Scholar 

  6. Rivera T, Azorín J, Falcony G, García M and Martínez E 2002 Radiat. Prot. Dosim. 100 317

    Article  CAS  Google Scholar 

  7. Salas P, De la Rosa-Cruz E, Diaz-Torres L A, Castaño V M, Melendrez R and Barboza-Flores M 2003 Radiat. Meas. 37 187

    Article  CAS  Google Scholar 

  8. Montalvo T R, Tenorio L, Nieto J A, Salgado M B, Estrada M S and Furetta C 2005 Radiat. Eff. Defects Solids 160 181

    Article  CAS  Google Scholar 

  9. Villa-Sánchez G, Mendoza-Anaya D, Eufemia Fernández-García M, Escobar-Alarcón L, Olea-Mejía O and González-Martínez P R 2014 Opt. Mater. 36 1219

    Article  Google Scholar 

  10. Rivera T, Olvera L, Azorín J, Sosa R, Barrera M, Soto A M et al 2006 Radiat. Eff. Defects Solids 161 91

    Article  CAS  Google Scholar 

  11. Villa-Sánchez G, Mendoza-Anaya D, Mondragón-Galicia G, Pérez-Hernández R, Olea-Mejía O and González Martínez P R 2014 Radiat. Phys. Chem. 97 118

    Article  Google Scholar 

  12. Zhang Y W, Sun X, Xu G and Yan C H 2004 Solid State Sci. 6 523

    Article  Google Scholar 

  13. Aruna S T and Rajam K S 2004 Mater. Res. Bull. 39 157

    Article  CAS  Google Scholar 

  14. Salah N, Habib S S, Khan Z H and Djouider F 2011 Radiat. Phys. Chem. 80 923

    Article  CAS  Google Scholar 

  15. Guinier A 1963 X-ray diffraction in crystals, imperfect crystals, and amorphous bodies (San Francisco: Freeman) ISBN No.: 9780486141343

  16. Horowitz Y S 1984 (USA: CRC Press) p 89

  17. Gokce M, Oguz K F, Karali T and Prokic M 2009 J. Phys. D: Appl. Phys. 42 105412

    Article  Google Scholar 

  18. Bahl S, Pandey A, Lochab S P, Aleynikov V E, Molokanov A G and Kumar P 2013 J. Lumin. 134 691

    Article  CAS  Google Scholar 

  19. Sunitha D V, Shivakumara C and Chakradhar R P S 2012 Spectrochim. Acta, Part A 96 532

    Article  Google Scholar 

  20. Chen R, Lawless J L and Pagonis V 2011 Radiat. Meas. 46 1380

    Article  CAS  Google Scholar 

  21. Tamrakar R K, Upadhyay K and Bisen D P 2017 Phys. Chem. Chem. Phys. 19 14680

    Article  CAS  Google Scholar 

  22. Lochab S P, Pandey A, Sahare P D, Chauhan R S, Salah N and Ranjan R 2007 Phys. Status Solidi A 204 2416

    Article  CAS  Google Scholar 

  23. Singh L, Chopra V and Lochab S P 2011 J. Lumin. 131 1177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raunak Kumar Tamrakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, K., Tamrakar, R.K. & Asthana, A. Investigation of a thermoluminescence response and trapping parameters and theoretical model to explain concentration quenching for \(\hbox {Yb}^{3+}\)-doped \(\hbox {ZrO}_{{2}}\) phosphors under UV exposure. Bull Mater Sci 42, 249 (2019). https://doi.org/10.1007/s12034-019-1845-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1845-x

Keywords

Navigation