Skip to main content
Log in

Evaluation of microbial inhibition properties of green and chemically synthesized ZnO nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Nanosized particles of zinc oxide have gained much attention due to several applications which includes bacterial inhibition. Therefore, this work evaluates zinc oxide properties synthesized using reduction (chemical) and bio-reduction (green) processes and their corresponding inhibition potentials. The bio-reduction process was achieved using Amaranthus spinosus at 70\(^{\circ }\)C while the reduction process was initiated in the chemical process using sodium hydroxide. The optical measurement of ZnO was carried out using an UV–Vis spectrophotometer. The structural and morphological properties of the synthesized ZnO were evaluated using Fourier transform infrared spectroscopy, X-ray diffractometry and scanning electron microscopy. The elemental composition was carried out using energy dispersive X-ray spectroscopy. The antimicrobial activity property of the nanoparticles was tested against Pseudomonas aeruginosa, Salmonella typhi and Shigella dysenteriae. The degree of susceptibility of ZnO nanoparticles was higher in the bio-reduction process than chemically synthesized for selected microorganisms. A sustainable pathway for development of bio-antibiotic is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akinsiku A A, Dare E O, Ajanaku K O, Adekoya J A, Alayande S O and Adeyemi A O 2016 J. Bionanosci. 10 171

    Article  CAS  Google Scholar 

  2. Sosa I O, Noguez C and Barrera R G 2003 J. Phys. Chem. B 107 6269

    Article  CAS  Google Scholar 

  3. Sun Y G, Mayers B, Herricks T and Xia Y N 2003 Nano Lett. 3 955

    Article  CAS  Google Scholar 

  4. Duran N, Marcato P D, Alves O L and Souza G 2005 J. Nanotechnol. 3 1

    Google Scholar 

  5. Ingle A, Gade A, Pierrat S, Sonnichsen C and Rai M 2008 Curr. Nanotechnol. 4 141

    CAS  Google Scholar 

  6. Taylor P L, Ussher A L and Burrell R E 2005 Biomaterials 26 7221

    Article  CAS  Google Scholar 

  7. Santhoshkumar J, Venkat Kumar S and Rajeshkumar S 2017 Res. Eff. Technol. 3 459

    Google Scholar 

  8. Baglioni P, Dei L, Fratoni L, Nostro L P and Moroni M 2003 Patent 8 827

    Google Scholar 

  9. Fei B, Deng Z, Xin J H, Zhang Y and Pang G 2006 Nanotechnology 17 1927

    Article  CAS  Google Scholar 

  10. Vigneshwaran N, Kumar S, Kathe A A, Varadarajan P V and Prasad V 2006 Nanotechnology 17 5087

    Article  CAS  Google Scholar 

  11. Wang R H, Xin J H, Tao X M and Daoud W A 2004 Chem. Phys. Lett. 398 250

    Article  CAS  Google Scholar 

  12. Arabi F, Imandar M, Negahdary M, Imandar M, Noughabi M T, Akbari-Dastjerdi H et al 2012 Schl. Res. Lib. Ann. Biol. Res. 3 3679

    CAS  Google Scholar 

  13. Wu Y L, Tok A I Y, Boey F Y C, Zeng X T and Zhang X H 2007 Appl. Surf. Sci. 253 5473

    Article  CAS  Google Scholar 

  14. Chen S, Kumar R V, Gedanken A and Zaban A 2001 Isr J. Chem. 41 51

    Article  CAS  Google Scholar 

  15. Ghaffarian H R, Saiedi M and Sayyadnejad M A 2011 Iran J. Chem. Eng. 30 1

    CAS  Google Scholar 

  16. Kelly P, Conxitasolans G V and Margarita S 2012 Chem. Lett. 41 1032

    Article  Google Scholar 

  17. Neetu S, Davinder K, Mehra R M and Avinashi K 2012 Open Renew. Energy J. 5 15

    Article  Google Scholar 

  18. Sharma D, Kanchi S and Bisetty K 2015 Arab. J. Chem. https://doi.org/10.1016/j.arabjc.2015.11.002

  19. Sabir S, Arshad M and Chaudhari S K 2014 Sci. World J. 2014 925494

    Article  Google Scholar 

  20. Bhagyashree D, Varsha C and Bhawana P 2017 Indian J. Sci. Res. 12 41

    Google Scholar 

  21. Maiyo Z C, Ngure R M, Matasyoh J C and Chepkorir R 2010 Afr. J. Biotechnol. 9 3178

    Google Scholar 

  22. Nascimento G G, Locatelli J and Freitas P C 2000 Braz. J. Microbiol. 31 247

    Google Scholar 

  23. Akinpelu D A and Onakoya T M 2006 Afr. J. Trad. 3 112

    Google Scholar 

  24. Becheri A, Durr M, Nostro P L and Baglioni P 2008 J. Nanopart. Res. 10 679

    Article  CAS  Google Scholar 

  25. Das S 2012 Genet. Resour. Crop Evol. 59 289

    Article  Google Scholar 

  26. Nanda A and Saravanan M 2009 Nanomed. Nanotechnol. Biol. Med. 5 452

    Article  CAS  Google Scholar 

  27. Cheesbrough M 2000 District laboratory practice in tropical countries (Cambridge, UK: The Press Syndicate of the University of Cambridge) p 157

  28. Stern J L, Hagerman A E, Steinberg P D and Mason P K 1996 J. Chem. Ecol. 22 1887

    Google Scholar 

  29. Tassou C C, Drosinos E H and Nychas G J E 1995 J. Appl. Bacteriol. 78 593

    Article  CAS  Google Scholar 

  30. Dixon R A, Dey P M and Lamb C J 1983 Mol. Biol. Adv. Enzyme 55 1

    CAS  Google Scholar 

  31. Kumar H and Rani R 2013 Int. Lett. Chem., Phys. Astron. 14 26

  32. Cullity B D 1978 The elements of X-ray diffraction (Boston, USA: Addison-Wesley) p 102

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S O Alayande.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alayande, S.O., Adeseluka, T.V., Odewumi, B.J. et al. Evaluation of microbial inhibition properties of green and chemically synthesized ZnO nanoparticles. Bull Mater Sci 42, 101 (2019). https://doi.org/10.1007/s12034-019-1761-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1761-0

Keywords

Navigation