Skip to main content
Log in

Thermal conductivity studies on magnetite nanofluids coated with short-chain and long-chain fatty acid surfactants

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The effect of the length of surfactant molecules on the surface of the nanoparticles on the thermal conductivity of nanofluids is studied. Magnetite (\(\hbox {Fe}_{3}\hbox {O}_{4}\)) nanoparticles of comparable sizes are stabilized with short-chain capric acid (\(\hbox {C}_{9}\hbox {H}_{19}\hbox {COOH}\)) and long-chain stearic acid (\(\hbox {C}_{17}\hbox {H}_{35}\hbox {COOH}\)) molecules. Thermal conductivity of the two surfactant-coated magnetite nanoparticles dispersed in toluene is measured as a function of the concentration of the particles in the fluids and in the presence of a magnetic field. Studies showed that the critical concentration for thermal conductivity enhancement is lower for stearic-acid-coated fluid as compared with the capric-acid-coated fluid. Comparable enhancement in the thermal conductivity is observed at higher concentrations of the particles. Relatively larger enhancement in the thermal conductivity is observed for the capric-acid-coated fluid in a magnetic field. The difference in the enhancement in the thermal conductivity, depending on the chain length of the surfactant, is explained in terms of the inter-particle magnetic interactions and formation of clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saterlie M S, Sahin H, Kavlicoglu B, Liu Y M and Graeve O A 2012 Chem. Mater. 24 3299

    Article  CAS  Google Scholar 

  2. Murshed S M S, de Castro C A N and Lourenço M J V 2012 J. Nanofluids 1 175

    Article  CAS  Google Scholar 

  3. Sun S and Zeng H 2002 J. Am. Chem. Soc. 124 8204

    Article  CAS  Google Scholar 

  4. Park J, An K, Hwang Y, Park J G, Noh H J, Kim J Y et al 2004 Nat. Mater. 3 891

    Article  CAS  Google Scholar 

  5. Tombácz E, Bica D, Hajdú A, Illés E, Majzik A and Vékás L 2008 J. Phys.: Condens. Matter 20 204103

    Google Scholar 

  6. Shen L F, Laibinis P E and Hatton T A 1999 Langmuir 15 447

    Article  CAS  Google Scholar 

  7. Shen L F, Laibinis P E and Hatton T A 1999 J. Magn. Magn. Mater. 194 37

    Article  CAS  Google Scholar 

  8. Guardia P, Batlle-Brugal B, Roca A G, Iglesias O, Morales M P, Serna C J et al 2007 J. Magn. Magn. Mater. 316 E756

    Article  CAS  Google Scholar 

  9. Filippousi M, Angelakeris M, Katsikini M, Paloura E, Efthimiopoulos I, Wang Y J et al 2004 J. Phys. Chem. C 118 16209

    Article  Google Scholar 

  10. Felicia L J, Johnson J C and Philip J 2014 J. Nanofluids 3 328

    Article  Google Scholar 

  11. Yuan Y, Rende D, Altan C L, Bucak S, Ozisik R and Borca-Tasciuc D A 2012 Langmuir 28 13051

    Article  CAS  Google Scholar 

  12. Younes H, Christensen G, Luan X N, Hong H P and Smith P 2012 J. Appl. Phys. 111 64308

    Article  Google Scholar 

  13. Vékás L, Bica D and Marinica O 2006 Rom. Rep. Phys. 58 257

    Google Scholar 

  14. Fu L, Dravid V P and Johnson D L 2001 Appl. Surf. Sci. 181 173

    Article  CAS  Google Scholar 

  15. Barbeta V B, Jardim R F, Kiyohara P K, Effenberger F B and Rossi L M 2010 J. Appl. Phys. 107 1

    Article  Google Scholar 

  16. Regmi R, Black C, Sudakar C, Keyes P H, Naik R, Lawes G et al 2009 J. Appl. Phys. 106 113902

    Article  Google Scholar 

  17. Vekas L, Bica D, Gheorghe D, Potencz I and Rasa M 1999 J. Magn. Magn. Mater. 201 159

    Article  CAS  Google Scholar 

  18. Avdeev M V, Bica D, Vekas L, Aksenov V L, Feoktystov A V, Marinica O et al 2009 J. Colloid Interface Sci. 334 37

    Article  CAS  Google Scholar 

  19. Avdeev M V, Bica D, Vekas L, Marinica O, Balasoiu M, Aksenov V L et al 2007 J. Magn. Magn. Mater. 311 6

    Article  CAS  Google Scholar 

  20. Patel H E, Das S K, Sundararajan T, Sreekumaran Nair A, George B and Pradeep T 2003 Appl. Phys. Lett. 83 2931

    Article  CAS  Google Scholar 

  21. Lenin R and Joy P A 2015 J. Nanofluids 4 310

    Article  Google Scholar 

  22. Lenin R and Joy P A 2016 J. Phys. Chem. C 120 11640

    Article  CAS  Google Scholar 

  23. Kuwahara Y, Zhang G, Wu J, Akai-Kasaya M, Saito A and Aono M 2002 Molecules 2 4

    Google Scholar 

  24. Adschiri T, Takami S, Arita T, Hojo D, Minami K, Aoki N et al 2013 in Handbook of advanced ceramics: materials, applications, processing and properties S Somiya (ed) (Waltham, USA: Academic Press) p 949

  25. Adschiri T and Byrappa K 2009 in Nanohybridization of organic–inorganic materials A Muramatsu and T Miyashita (eds) (Heidelberg, Berlin: Springer-Verlag) p 247

  26. Lane C A, Burton D E and Crabb C C 1984 J. Chem. Educ. 61 815

    Article  CAS  Google Scholar 

  27. Zhao S Y, Lee D K, Kim C W, Cha R G, Kim Y H and Kang Y S 2006 Bull. Korean Chem. Soc. 27 237

    Article  Google Scholar 

  28. Waldron R D 1955 Phys. Rev. 99 1727

    Article  CAS  Google Scholar 

  29. Bronstein L M, Huang X L, Retrum J, Schmucker A, Pink M, Stein B D et al 2007 Chem. Mater. 19 3624

    Article  CAS  Google Scholar 

  30. Ding X, Bao L, Jiang J and Gu H 2014 RSC Adv. 4 9314

    Article  CAS  Google Scholar 

  31. Yang K, Peng H, Wen Y and Li N 2010 Appl. Surf. Sci. 256 3093

    Article  CAS  Google Scholar 

  32. Liu C and Zhang Z J 2001 Chem. Mater. 13 2092

    Article  CAS  Google Scholar 

  33. Lenin R and Joy P A 2017 J. Colloid Interface Sci. 506 162

    Article  CAS  Google Scholar 

  34. Vargas J, Nunes W, Socolovsky L, Knobel M and Zanchet D 2005 Phys. Rev. B. 72 184428

    Article  Google Scholar 

  35. Lenin R and Joy P A 2017 Colloids Surf. A 529 922

    Article  CAS  Google Scholar 

  36. Philip J, Shima P D and Raj B 2007 Appl. Phys. Lett. 91 203108

    Article  Google Scholar 

  37. Mendelev V S and Ivanov A O 2004 Phys. Rev. E 70 051502

    Article  Google Scholar 

  38. Philip J, Shima P D and Raj B 2008 Nanotechnology 19 305706

    Article  Google Scholar 

  39. Shima P D, Philip J and Raj B 2009 Appl. Phys. Lett. 94 223101

    Article  Google Scholar 

  40. Lalatonne Y, Richardi J and Pileni M P 2004 Nat. Mater. 3 121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R Lenin and A Dadwal are thankful to University Grants Commission (UGC) for financial support in the form of research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P A Joy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenin, R., Dadwal, A. & Joy, P.A. Thermal conductivity studies on magnetite nanofluids coated with short-chain and long-chain fatty acid surfactants. Bull Mater Sci 41, 120 (2018). https://doi.org/10.1007/s12034-018-1638-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1638-7

Keywords

Navigation