Skip to main content
Log in

Thermal and curl properties of PET/PP blend fibres compatibilized with EAG ternary copolymer

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Blends of polyethylene terephthalate (PET)/polypropylene (PP) and the ternary copolymer ethylene–acrylic ester–glycidyl methacrylate (EAG) as the compatibilizer were prepared using a twin-screw extruder. The thermal properties, densities and morphologies of the blends were determined using various techniques. Next, PET/PP blend fibres were prepared using a melt–spinning system, and their curl properties were investigated. Scanning electron microscopy (SEM) results showed that the number of PP particles in the PET matrix and size of the PP phase decreased as the EAG content increased. The melting temperature \((T_{\mathrm{m}})\) and cooling crystallization \((T_{\mathrm{cc}})\) values of PP in the PET/PP blends decreased significantly after the addition of 1% EAG. The density of the PET/PP blend fibres decreased significantly with increase in the EAG and PP contents. After curl formation, the curl length of PP in the fibres was shorter than that of PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Elabid A E A, Zhang J, Shi J, Guo Y, Ding K and Zhang J 2016 Appl. Surf. Sci. 375 26

    Article  Google Scholar 

  2. Lepers J C, Favis B D and Tabar R J 1997 J. Polym. Sci. B: Polym. Phys. 35 2271

    Article  Google Scholar 

  3. Fu J H, Chen X D, Xu Q J, Wang R Y and Wang X J 2016 Polym. Compos. 37 1167

    Article  Google Scholar 

  4. Si X, Guo L, Wang Y and Lau K 2008 Compos. Sci. Technol. 68 2943

    Article  Google Scholar 

  5. Inuwa I M, Hassan A, Wang D Y, Samsudin S A, Haafiz M K M, Wong S L et al 2014 Polym. Degrad. Stab. 110 137

    Article  Google Scholar 

  6. Bui T T L, Nguyen D A, Ho S V and Uong H T N 2016 J. Appl. Polym. Sci. 133 43920

    Google Scholar 

  7. Inuwa I M, Hassan A, Samsudin S A, Kassim M H M and Jawaid M 2014 Polym. Compos. 35 2029

    Article  Google Scholar 

  8. Inuwa I M, Hassan A, Samsudin S A, Haafiz M K M and Jawaid M 2017 J. Vinyl Addit. Technol. 23 45

    Article  Google Scholar 

  9. Papadopoulou C P and Kalfoglou N K 2000 Polymer 41 2543

    Article  Google Scholar 

  10. Calcagno C I W, Mariani C M, Teixeira S R and Mauler R S 2008 Compos. Sci. Technol. 68 2193

    Article  Google Scholar 

  11. Entezam M, Khonakdar H A, Yousefi A A, Jafari S H, Wagenknecht U, Heinrich G et al 2012 Macromol. Mater. Eng. 297 312

    Article  Google Scholar 

  12. Akbari M, Zadhoush A and Haghighat M 2007 J. Appl. Polym. Sci. 104 3986

    Article  Google Scholar 

  13. Kim H C, Kim D H, Park J, Lim J C and Park Y W 2009 Fiber. Polym. 10 594

    Article  Google Scholar 

  14. Champagne M F, Huneault M A, Row C and Peyrel W 1999 Polym. Eng. Sci. 39 976

    Article  Google Scholar 

  15. Yazdani-Pedram M, Vega H, Retuert J and Quijada R 2003 Polym. Eng. Sci. 43 960

    Article  Google Scholar 

  16. Souza A M C and Caldeira C B 2015 J. Appl. Polym. Sci. 132 41892

    Article  Google Scholar 

  17. Heino M, Kirjava J, Hietaoja P and Seppälä J 1997 J. Appl. Polym. Sci. 65 241

    Article  Google Scholar 

  18. Friedrich K, Evstatiev M, Fakirov S, Evstatiev O, Ishii M and Harrass M 2005 Compos. Sci. Technol. 65 107

    Article  Google Scholar 

  19. Ershad-Langroudi A, Jafarzadeh-Dogouri F, Razavi-Nouri M and Oromiehie A 2008 J. Appl. Polym. Sci. 110 1979

    Article  Google Scholar 

  20. Itim B and Philip M 2015 Polym. Degrad. Stab. 117 84

    Article  Google Scholar 

  21. Yi X, Xu L, Wang Y L, Zhong G J, Ji X and Li Z M 2010 Eur. Polym. J. 46 719

    Article  Google Scholar 

  22. Mostofi N, Nazockdast H and Mohammadigoushki H 2009 J. Appl. Polym. Sci. 114 3737

    Article  Google Scholar 

  23. Rizvi A, Park C B and Favis B D 2015 Polymer 68 83

    Article  Google Scholar 

  24. Bang H J, Kim H Y, Jin F L and Park S J 2011 J. Ind. Eng. Chem. 17 805

    Article  Google Scholar 

  25. Bang H J, Kim H Y, Jin F L and Park S J 2011 Bull. Korean Chem. Soc. 32 541

    Article  Google Scholar 

  26. Park Y W, Song I J and Kim H C 2014 Fiber. Polym. 15 1078

    Article  Google Scholar 

  27. Chu K H, Park M, Kim H Y, Jin F L and Park S J 2014 Bull. Korean Chem. Soc. 35 1901

    Article  Google Scholar 

  28. Ho Y S, Kim H Y, Jin F L and Park S J 2012 Polym. Eng. Sci. 52 149

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (10050953) funded by the Ministry of Trade, Industry & Energy (MI, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Jin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y.W., Park, M., Kim, H.Y. et al. Thermal and curl properties of PET/PP blend fibres compatibilized with EAG ternary copolymer. Bull Mater Sci 41, 104 (2018). https://doi.org/10.1007/s12034-018-1621-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1621-3

Keywords

Navigation